长江航道整治建筑物服役状态时空分析与预测  

Spatio-temporal analysis and prediction of service status of the Yangtze River channel improvement buildings

在线阅读下载全文

作  者:张帆 王平义[1] 张斌[1] 刘怀汉 ZHANG Fan;WANG Pingyi;ZHANG Bin;LIU Huaihan(Key Laboratory of Hydraulic and Waterway Engineering of Ministry of Education,Chongqing Jiaotong University,Chongqing 400074,China;Yangtze Normal University,Chongqing 408100,China;Changjiang Waterway Bureau,Wuhan 430010,China)

机构地区:[1]重庆交通大学,水利水运工程教育部重点实验室,重庆400074 [2]长江师范学院,重庆408100 [3]长江航道局,湖北武汉430010

出  处:《水运工程》2024年第6期84-90,121,共8页Port & Waterway Engineering

基  金:国家重点研发计划项目(2018YFB1600403);重庆交通大学水利水运工程教育部重点实验室开放基金项目(SLK2023B09);重庆市研究生科研创新项目(CYB23251)。

摘  要:为了能够优化航道基础设施有限的维护经费分配,为整治建筑物维修预算的制定提供科学依据,对2017—2021年长江干线航道整治建筑物的技术状况分类进行全面统计,分别通过求期望和二次回归的方式对各管辖区域未来一年需要维修的建筑物数量进行预测。得到干线航道整治建筑物的服役状态时空分布特点,并提出以辖区为单元的建筑物未来服役状态预测方法。结果表明:整治建筑物技术状况类别占比的时间分布相对比较稳定,逐年变化不大,而空间分布受不同河段特定环境影响较大;在长江上游河段的二和三类占比突出,中、下游河段一类占比突出;求期望法的预测精度受时序样本的波动程度影响较大,而二次回归法受影响相对较小。To optimize the allocation of limited maintenance funds for channel infrastructure and provide a scientific basis for the formulation of building maintenance budgets,statistics are conducted on improvement building technical condition categories from 2017 to 2021,and the number of improvement buildings requiring maintenance next year is predicted through expectation and quadratic regression.The spatio-temporal distribution characteristics of improvement building service status are analyzed,and a novel method of predicting future technical condition categories in each jurisdiction is proposed.The results show that the temporal distribution of technical condition categories is relatively stable,with little change from year to year,while the spatial distribution is greatly influenced by the specific environment of different reaches,with prominent proportions of 2nd and 3rd category buildings in the upper reach and prominent proportions of the 1st category buildings in the middle and lower reaches.Additionally,the prediction accuracy of the expectation method is strongly influenced by the fluctuation degree of the time series sample,but the quadratic regression method is less affected.

关 键 词:航道整治建筑物 服役状态 技术状况分类 时空分布 小样本预测 

分 类 号:U617.9[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象