基于LIBS迭代的工业燃煤锅炉精细化配煤掺烧优化决策技术  

Optimization Decision Technology for Fine Coal Blending and Combustion of Industrial Coal-fired Boilers Based on LIBS Iteration

在线阅读下载全文

作  者:陈鹏 CHEN Peng(Guoneng Shanxi Hequ Power Generation Co.Ltd.,Hequ 036500,China)

机构地区:[1]国能山西河曲发电有限公司,山西河曲036500

出  处:《工业加热》2024年第6期52-55,共4页Industrial Heating

摘  要:配煤掺烧中涉及的燃料种类和成分较多,工业燃煤锅炉的运行效率、氮氧化物产量等受到影响,故提出基于LIBS迭代的工业燃煤锅炉精细化配煤掺烧优化决策技术。分析与阐明配煤掺烧特性,基于LIBS迭代技术,获取配煤元素LIBS光谱数据,利用S-G滤波器去除LIBS光谱噪声数据,应用随机森林方法提取LIBS光谱数据特征,定量检测配煤元素,以氮氧化物产量最小,工业燃煤锅炉效率最大为目标,构造配煤掺烧优化决策函数,制定目标函数求解程序,执行程序即可获得工业燃煤锅炉精细化配煤掺烧优化决策方案。实验数据显示:在不同实验组别背景下,应用提出技术获得的氮氧化物总产量最小值为200 mg·m^(3),工业燃煤锅炉效率最大值为96%,充分证实了提出技术应用性能更优质。There are many types and components of fuel involved in coal blending and combustion,which affect the operational efficiency and nitrogen oxide production of industrial coal-fired boilers.Therefore,a refined coal blending and combustion optimization decision-making technology for industrial coal-fired boilers based on LIBS iteration is proposed.Analyze and clarify the characteristics of coal blending,obtain LIBS spectral data of coal blending elements based on LIBS iterative technology,remove LIBS spectral noise data using S-G filter,extract LIBS spectral data characteristics using Random forest method,quantitatively detect coal blending elements,construct optimization decision objective function of coal blending and combustion,and develop objective function solution program,By executing the program,the optimization decision plan for fine coal blending and combustion of industrial coal-fired boilers can be obtained.The experimental data shows that under different experimental group backgrounds,the minimum total nitrogen oxide production obtained by applying the proposed technology is 200 mg·m^(3),and the maximum efficiency of industrial coal-fired boilers is 96%,fully confirming that the proposed technology has better application performance.

关 键 词:精细化 工业燃煤锅炉 优化决策 LIBS迭代算法 配煤掺烧 煤质元素分析与预测 

分 类 号:TK229.6[动力工程及工程热物理—动力机械及工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象