功能磁共振成像技术及人工智能评估鼻咽癌分期的研究进展  

Research progress of functional magnetic resonance imaging and artificial intelligence in evaluating the staging of nasopharyngeal carcinoma

在线阅读下载全文

作  者:莫志英 周文娟 杨维珍 MO Zhiying;ZHOU Wenjuan;YANG Weizhen(Department of Radiology,Wuzhou People's Hospital of Guangxi,Wuzhou 543000,China)

机构地区:[1]广西梧州市人民医院放射科,梧州543000

出  处:《磁共振成像》2024年第6期202-206,共5页Chinese Journal of Magnetic Resonance Imaging

基  金:广西壮族自治区卫生健康委自筹经费科研项目(编号:Z-D20231649)。

摘  要:鼻咽癌(nasopharyngeal carcinoma,NPC)是头颈部最常见的恶性肿瘤之一,对其进行精准的分期有助于指导个体化治疗方案的实施。目前,临床上主要依靠磁共振成像(magnetic resonance imaging,MRI)进行NPC分期,而常规MRI只能根据肿瘤形态学改变进行分期,具有较强主观性。动态对比增强MRI、扩散加权成像、体素内不相干运动成像、扩散峰度成像等功能MRI技术通过定量测量,使得对NPC分期评估更客观,但目前这些技术及其参数值对NPC分期的评估尚未形成统一标准。人工智能从影像图像中挖掘到更多信息,在未来有很好的应用前景。本文通过综述这些技术在评估NPC分期的价值,以期为临床诊治提供可靠依据,并为未来研究提供参考。Nasopharyngeal carcinoma(NPC)is one of the most common malignant tumors of the head and neck,and accurate staging is helpful to guide the implementation of individualized treatment plan.At present,NPC staging mainly depends on magnetic resonance imaging(MRI),while conventional MRI can only be staged according to the morphological changes of tumor,which is highly subjective.Dynamic contrast-enhanced MRI,diffusion-weighted imaging,intravoxel incoherent motion imaging,diffusion kurtosis imaging and other MRI functional imaging technologies make the staging evaluation of NPC more objective through quantitative measurement,but at present,these technologies and their parameter values have not yet formed a unified standard for the staging evaluation of NPC.Artificial intelligence excavates more information from images and has a good application prospect in the future.We reviewed the value of these techniques in evaluating NPC staging in this paper,in order to provide a reliable basis for clinical diagnosis and treatment,and provide a reference direction for future research.

关 键 词:鼻咽癌 分期 磁共振成像 功能磁共振成像 人工智能 

分 类 号:R445.2[医药卫生—影像医学与核医学] R739.62[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象