检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈映恺 乐晨 郑永红 朱海军 钟振涛 刘江涛 刘阳 李拥政 郭林峰 徐小敏[7] CHEN Yingkai;LE Chen;ZHENG Yonghong;ZHU Haijun;ZHONG Zhentao;LIU Jiangtao;LIU Yang;LI Yongzheng;GUO Linfeng;XU Xiaomin(School of Physics and Optoelectronic Engineering,Nanjing University of Information Science&Technology,Nanjing 210044,China;Nanjing Metro Construction Co.,Ltd,Nanjing 210019,China;China Railway No.3 Group East China Construction Co.,Ltd,Nanjing 211153,China;China Railway(Shanghai)Investment Group Co.,Ltd,Shanghai 200126,China;China Railway Tunnel Group No.2 Co.,Ltd,Langfang 065200,China;Jiangsu Key Laboratory for Optoelectronic Detection of Atmosphere and Ocean,Nanjing 210044,China;Department of Engineering,University of Cambridge,Cambridge CB21PZ,United Kingdom)
机构地区:[1]南京信息工程大学物理与光电工程学院,南京210044 [2]南京地铁建设有限责任公司,南京210019 [3]中铁三局集团华东建设有限公司,南京211153 [4]中铁(上海)投资集团有限公司,上海200126 [5]中铁隧道集团二处有限公司,廊坊065200 [6]江苏省大气海洋光电探测重点实验室,南京210044 [7]剑桥大学工程系,英国剑桥CB21PZ
出 处:《光子学报》2024年第6期122-131,共10页Acta Photonica Sinica
基 金:国家自然科学基金(No.62175113);江苏省重点研发计划(No.BE2022076)。
摘 要:分布式光纤传感技术在工程领域中逐渐得到大规模应用,为了简化传感解调模式以提高光纤监测方案的工程便捷性和可行性,在降低光纤监测成本的同时提高监测的精度和准确性,提出了一种基于局部受激散射的布里渊光时域反射系统。在采取光纤单端探测以满足工程便捷使用要求的基础上,利用连续泵浦光的自发布里渊散射与系统中的探测脉冲光作用,通过自发布里渊散射系统中产生的局部受激布里渊散射模式,来提升布里渊光时域反射仪的传感距离和测温精度。通过此方法,可使原低成本布里渊光纤传感系统在使用宽度为100 ns的常用探测光脉冲基础上,将2.7 km测温光缆的末端测温精度提升至±1.27℃,提升了283%,改善了系统的测温精度和传感距离,且该结构不额外增加运算时间及其他冗余光电器件。与传统相干探测结构相比,该系统为改善低成本建筑工地专用布里渊光时域反射仪的性能提供了一种途径,尽量满足当前阶段建筑工程领域对超低成本分布式光纤解调仪的应用需求。As low-cost and compact Brillouin optical time domain reflectometers are increasingly being used in the field of general engineering structural monitoring,improving the performance of these reflectometers is essential,which is beneficial for their functionality and accuracy in monitoring and therefore is conducive to their large-scale application.In this paper,the Brillouin optical time domain reflection structure based on local excitation is used to improve the performance of the ultra-low cost Brillouin optical time domain reflectometry without increasing the operation time and other redundant optoelectronic devices to maintain the ultra-low cost structure.The front end of the experimental device is composed of laser,semiconductor optical amplifier,Erbium-Doped Fiber Amplifier(EDFA)and three couplers.A beam of continuous light output by the laser is divided into 90%and 10%by the coupler1.90%of the light enters the upper branch and is modulated to a width of 100 ns and a period of 40μs after passing through the Semiconductor Optical Amplifier(SOA).10%of the light enters the middle layer and the lower layer branch,the middle layer is used as the continuous pump light of pulsed light,and the lower layer is used as the reference light path.Probe light and pump light enter 90%port and 10%port of 10∶90 coupler3 respectively,and the two beams are fused and injected into 3 km Fiber Under Test(FUT).Stimulated Brillouin scattering Stokes light generated in the optical fiber to be tested enters EDFA for amplification through the 3rd ports of the circulator,and is filtered out of Amplifier Spontaneous Emission(ASE)noise by the Dense Wavelength Division Multiplexer(DWDM)and converted into 10.8 GHz Radio Frequency(RF)signal by the Photo Detector(PD).After amplification and filtering,the RF signal is down converted to a signal of about 600 MHz by Voltage Controlled Oscillator(VCO),and finally collected by a data acquisition card with a sampling rate of 5 GSa/S.In the Brillouin optical time domain reflectometry system,the s
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7