检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:闫红宇 赵宇[2] 陈媛媛[2] 刘昊 王杰 张瑞[2] 王志斌 YAN Hongyu;ZHAO Yu;CHEN Yuanyuan;LIU Hao;WANG Jie;ZHANG Rui;WANG Zhibin(School of Instrument and Electronics,North University of China,Taiyuan 030051,China;School of Information and Communication Engineering,North University of China,Taiyuan 030051,China)
机构地区:[1]中北大学仪器与电子学院,太原030051 [2]中北大学信息与通信工程学院,太原030051
出 处:《光子学报》2024年第6期264-274,共11页Acta Photonica Sinica
基 金:国家自然科学基金(No.62105302);山西省自然科学研究面上项目(No.202203021221103)。
摘 要:为了降低远程激光诱导击穿光谱原位分析中连续背景辐射、随机噪声和样品基体效应对特征光谱的影响,提出一种通过适应度函数将粒子群优化和非对称重加权正则最小二乘相融合的自适应基线校正方法,旨在提高远程激光诱导击穿光谱的分析能力。以三种掺杂相近微量元素的铝基合金标样为研究对象,相同实验条件下利用所提出的基线校正方法研究并对比自适应迭代重加权正则最小二乘算法、非对称重加权正则最小二乘算法处理后的光谱信噪比与拟合基线的变化趋势。为了验证所提方法的有效性,构建了三次核函数支持向量机的铝基合金标样精细分类模型,其独立测试集的混淆矩阵分类准确率为100%。结果表明,自适应基线校正方法所拟合的基线变化趋势与激光诱导击穿光谱的实际基线轨迹相吻合,且特征光谱能够清晰地分离。该方法可有效降低随机噪声对光谱数据分析的影响,对于提高远程激光诱导击穿光谱原位分析的准确性和可靠性具有意义。An adaptive baseline correction method was proposed by combining Particle Swarm Optimization(PSO)and asymmetrically reweighted Penalized Least Squares(arPLS)through fitness function to reduce or eliminate the influence of continuous background radiation,random noise,and sample matrix effect on the characteristic spectrum in the in-situ analysis of long-range Laser-Induced Breakdown Spectroscopy(LIBS).The PSO-arPLS approach is intended to increase the remote LIBS's analytical capacity.The method adds the regular function to the loss function,turning the limited problem into an unconstrained problem,and uses the“asymmetric weighting”approach to accomplish the adaptive baseline correction goal.PSO and arPLS were combined by fitness function and applied to an aluminum-based alloy with trace metal elements as the research sample.Particle swarm automatically discovered the optimal parameters of arPLS fitting baseline to achieve the balance of weight vector and smoothing parameters in baseline signal.The spectral Signal-to-Noise Ratio(SNR)and noise reduction effect of the short-wave and long-wave spectral segments were examined,using the gathered 6061 series aluminum base alloy LIBS as an example.PSO-arPLS was then compared with the conventional airPLS and asPLS calibration methods.Finally,the kernel Support Vector Machine(SVM)model is trained using the original LIBS data set of aluminum base alloy and the data set after baseline correction using the aforementioned three methods,and the confusion matrix of the model is analyzed to confirm the validity of the suggested baseline correction method.The results demonstrate that the suggested PSO-arPLS approach can not only reduce the spectral baseline fluctuation but also increase the spectral SNR and boost the spectral dynamic range when compared to conventional airPLS and asPLS calibration methods.PSO-arPLS can effectively preserve the LIBS signal with spectral characteristics after correction.In contrast,the fitting baselines proposed by airPLS and asPLS methods lead
关 键 词:远程激光诱导击穿光谱 基线校正方法 原位分析 核函数支持向量机 铝基合金标样
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.225.34.193