Antiplasmodial mechanism of Lawsonia inermis: An in silico based investigation  被引量:1

在线阅读下载全文

作  者:Ridwan Abiodun Salaam Funmilayo I.D.Afolayan 

机构地区:[1]Department of Zoology,University of Ibadan,Ibadan 200005,Nigeria.

出  处:《Infectious Diseases Research》2024年第1期8-26,共19页传染病研究(英文)

摘  要:Background:Lawsonia inermis has been widely reported to be used as an herbal treatment for Malaria.However,despite several experimental studies about its antimalarial activities,the approach through which the herbal plant suppresses plasmodium infection is yet to be found.Consequently,this study uses computational approaches to understand the biological targets and pathways involved in the antiplasmodial activities of Lawsonia inermis compounds.Methods:The Gas Chromatography-Mass Spectrometry technique identified the phytocompounds present in the herbal plant.GeneCards,OMIM,and NCBI databases were explored to collate target proteins for further network pharmacology analysis.The phytocompounds were subjected to Absorption,Distribution,Metabolism,Excretion and Toxicity(ADMET)and druglikeness analysis.The STRING algorithm and Cytoscape were employed to develop and analyze the relationships among target proteins and compounds/targets/pathways network of the putative targets of the phytocompounds.Further computational analysis was carried out to identify potential drug leads.Results:Based on the Network Pharmacology studies,phytocompounds in Lawsonia inermis exhibit antiplasmodial activity by interacting with therapeutic genes that play essential roles in metabolism and signaling pathways.Notable among the genes are MMP9,MAPK1,HMOX1 and IDO1.Meanwhile,the most influenced pathways include the metabolic pathway,PI3K-Akt signaling pathway,and HIF-1 signaling pathway.ADMET analysis,molecular docking analysis,and molecular dynamics simulation revealed that 3-phenyl-2-Isoxazoline and 2-Dimethylamino-3’-methoxyacetophenone are recommendable drug leads for Malaria treatment as they form stable and favorable complexes with Matrix metalloproteinase-9(MMP9)target.Conclusion:The 3-phenyl-2-Isoxazoline and 2-Dimethylamino-3’-methoxyacetophenone phytocompounds from Lawsonia inermis herbal plant are predicted as antimalarial drug candidates and recommended for further wet-lab studies.

关 键 词:Lawsonia inermis computational studies plasmodium falciparum network pharmacology molecular dynamic 

分 类 号:R531.3[医药卫生—内科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象