Weak Fault Feature Extraction of the Rotating Machinery Using Flexible Analytic Wavelet Transform and Nonlinear Quantum Permutation Entropy  被引量:1

在线阅读下载全文

作  者:Lili Bai Wenhui Li He Ren Feng Li TaoYan Lirong Chen 

机构地区:[1]College of Aeronautics and Astronautics,Taiyuan University of Technology,Taiyuan,030024,China [2]Commercial Aircraft Corporation of China,Ltd.,Shanghai,200126,China [3]College of Physics and Electronic Engineering,State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University,Taiyuan,030006,China

出  处:《Computers, Materials & Continua》2024年第6期4513-4531,共19页计算机、材料和连续体(英文)

基  金:supported financially by FundamentalResearch Program of Shanxi Province(No.202103021223056).

摘  要:Addressing the challenges posed by the nonlinear and non-stationary vibrations in rotating machinery,where weak fault characteristic signals hinder accurate fault state representation,we propose a novel feature extraction method that combines the Flexible Analytic Wavelet Transform(FAWT)with Nonlinear Quantum Permutation Entropy.FAWT,leveraging fractional orders and arbitrary scaling and translation factors,exhibits superior translational invariance and adjustable fundamental oscillatory characteristics.This flexibility enables FAWT to provide well-suited wavelet shapes,effectively matching subtle fault components and avoiding performance degradation associated with fixed frequency partitioning and low-oscillation bases in detecting weak faults.In our approach,gearbox vibration signals undergo FAWT to obtain sub-bands.Quantum theory is then introduced into permutation entropy to propose Nonlinear Quantum Permutation Entropy,a feature that more accurately characterizes the operational state of vibration simulation signals.The nonlinear quantum permutation entropy extracted from sub-bands is utilized to characterize the operating state of rotating machinery.A comprehensive analysis of vibration signals from rolling bearings and gearboxes validates the feasibility of the proposed method.Comparative assessments with parameters derived from traditional permutation entropy,sample entropy,wavelet transform(WT),and empirical mode decomposition(EMD)underscore the superior effectiveness of this approach in fault detection and classification for rotating machinery.

关 键 词:Rotating machinery quantum theory nonlinear quantum permutation entropy Flexible Analytic Wavelet Transform(FAWT) feature extraction 

分 类 号:O413[理学—理论物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象