Joint Rain Streaks & Haze Removal Network for Object Detection  

在线阅读下载全文

作  者:Ragini Thatikonda Prakash Kodali Ramalingaswamy Cheruku Eswaramoorthy K.V 

机构地区:[1]Department of Electronics and Communication Engineering,National Institute of Technology,Warangal,506004,India [2]Department of Computer Science and Engineering,National Institute of Technology,Warangal,506004,India [3]Department of Electronics and Communication Engineering,Indian Institute of Information Technology,Design and Manufacturing,Kurnool,518008,India

出  处:《Computers, Materials & Continua》2024年第6期4683-4702,共20页计算机、材料和连续体(英文)

摘  要:In the realm of low-level vision tasks,such as image deraining and dehazing,restoring images distorted by adverse weather conditions remains a significant challenge.The emergence of abundant computational resources has driven the dominance of deep Convolutional Neural Networks(CNNs),supplanting traditional methods reliant on prior knowledge.However,the evolution of CNN architectures has tended towards increasing complexity,utilizing intricate structures to enhance performance,often at the expense of computational efficiency.In response,we propose the Selective Kernel Dense Residual M-shaped Network(SKDRMNet),a flexible solution adept at balancing computational efficiency with network accuracy.A key innovation is the incorporation of an M-shaped hierarchical structure,derived from the U-Net framework as M-Network(M-Net),within which the Selective Kernel Dense Residual Module(SDRM)is introduced to reinforce multi-scale semantic feature maps.Our methodology employs two sampling techniques-bilinear and pixel unshuffled and utilizes a multi-scale feature fusion approach to distil more robust spatial feature map information.During the reconstruction phase,feature maps of varying resolutions are seamlessly integrated,and the extracted features are effectively merged using the Selective Kernel Fusion Module(SKFM).Empirical results demonstrate the comprehensive superiority of SKDRMNet across both synthetic and real rain and haze datasets.

关 键 词:Image deraining Selective Dense Residual Module(SDRM) Selective Kernel Fusion Module(SKFM) Selective KernelDense Residual M-Shaped Network(SKDRMNet) 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象