检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王潇扬 Xiaoyang Wang(School of Philosophy,Beijing Normal University)
机构地区:[1]北京师范大学哲学学院
出 处:《逻辑学研究》2024年第3期51-73,共23页Studies in Logic
基 金:supported by the National Social Science Fund of China(No.19ZDA041)。
摘 要:本文在《Modal Logic over Lattices》的基础工作之上,进一步探索了模态逻辑与格理论之间的关系。在之前的研究中,使用带二元模态词<sup>,<inf>的多元混合逻辑通过标准克里普克语义讨论格结构。本文将讨论如何使用模态逻辑刻画下半格结构。为了刻画下半格,本文使用了带有一元模态词P和二元模态词<inf>的多元混合逻辑语言并给出了半格上的多元混合逻辑的完整公理化。在已有的相关结果中,格的定义主要基于偏序关系。在本文的后半部分,提出了一种更符合代数视角的格的替代定义,并给出了相应的模态公理化结果。This paper builds on the previous work starting by X.Wang and Y.Wang(2022.2023)on modal logics over lattices,exploring further the complex relationship between modal logic and lattice theory.In our initial research,we utilized polyadic hybrid logic with binary modalities(sup),(inf)to discuss lattices via standard semantics.This paper introduces a focused examination of meet semi-lattices,structures in which not every pair of elements necessarily has a supremum.To address meet semi-lattices,it employs the language of polyadic hybrid logic with unary modality P and binary modality(inf).Subsequently,a complete axiomatization of polyadic hybrid logic over semi-lattices is obtained.In our earlier work,the definition of lattices was primarily based on partial order relations.In the latter part of this paper,an alternative definition of lattices that aligns more with an algebraic perspective is proposed,and the corresponding axiomatic results are provided.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200