半格模态逻辑以及格的模态公理化新方法  

Modal Logics over Semi-lattices and Lattices with Alternative Axiomatization

在线阅读下载全文

作  者:王潇扬 Xiaoyang Wang(School of Philosophy,Beijing Normal University)

机构地区:[1]北京师范大学哲学学院

出  处:《逻辑学研究》2024年第3期51-73,共23页Studies in Logic

基  金:supported by the National Social Science Fund of China(No.19ZDA041)。

摘  要:本文在《Modal Logic over Lattices》的基础工作之上,进一步探索了模态逻辑与格理论之间的关系。在之前的研究中,使用带二元模态词<sup>,<inf>的多元混合逻辑通过标准克里普克语义讨论格结构。本文将讨论如何使用模态逻辑刻画下半格结构。为了刻画下半格,本文使用了带有一元模态词P和二元模态词<inf>的多元混合逻辑语言并给出了半格上的多元混合逻辑的完整公理化。在已有的相关结果中,格的定义主要基于偏序关系。在本文的后半部分,提出了一种更符合代数视角的格的替代定义,并给出了相应的模态公理化结果。This paper builds on the previous work starting by X.Wang and Y.Wang(2022.2023)on modal logics over lattices,exploring further the complex relationship between modal logic and lattice theory.In our initial research,we utilized polyadic hybrid logic with binary modalities(sup),(inf)to discuss lattices via standard semantics.This paper introduces a focused examination of meet semi-lattices,structures in which not every pair of elements necessarily has a supremum.To address meet semi-lattices,it employs the language of polyadic hybrid logic with unary modality P and binary modality(inf).Subsequently,a complete axiomatization of polyadic hybrid logic over semi-lattices is obtained.In our earlier work,the definition of lattices was primarily based on partial order relations.In the latter part of this paper,an alternative definition of lattices that aligns more with an algebraic perspective is proposed,and the corresponding axiomatic results are provided.

关 键 词:模态词 模态逻辑 公理化 逻辑语言 偏序关系 半格 格结构 多元混合 

分 类 号:B815.1[哲学宗教—逻辑学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象