检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付小轩 赵之光 Xiaoxuan Fu;Zhiguang Zhao(School of Humanities,China University of Political Science and Law;School of Mathematics and Statistics,Taishan University)
机构地区:[1]中国政法大学人文学院 [2]泰山学院数学与统计学院
出 处:《逻辑学研究》2024年第3期86-101,共16页Studies in Logic
基 金:supported by Tsinghua University Initiative Scientific Research Program;supported by Taishan Young Scholars Program of the Government of Shandong Province,China(No.tsqn201909151);Shandong Provincial Natural Science Foundation,China(No.ZR2023QF021);Support Plan on Science and Technology for Youth Innovation of Universities in Shandong Province(No.2021KJ086)。
摘 要:在本文中,我们给出模态计数逻辑ML(#)在不同框架类下的可满足性的判定过程。我们使用两种方法,一种是通过修改ML(#)相对于全部克里普克框架的可满足性的判定算法,另一种是将ML(#)的可判定性归约到基本模态逻辑。我们还证明了分次模态计数逻辑GML(#)相对于全部克里普克框架的可判定性。In the present paper,we give the decision procedure of satisfiability of modal logic with counting ML(#)in different frame classes,by two types of methods,one by modifying the decision algorithm of satisfiability for ML(#)with respect to the class of all Kripke frames as described by J.van Benthem and T Icard(2021).the other by reducing decidability of ML(#)to that of basic modal logic.We also show the decidability of graded modal logic with counting GML(#)with respect to the class of all Kripke frames.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.251.131