检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:恽琴素 周伟贤 徐卉[2] 刘猛[3] 陈荣[1] YUN Qinsu;ZHOU Weixian;XU Hui;LIU Meng;CHEN Rong(Dept.of Pharmacy,the First People’s Hospital of Changzhou,Jiangsu Changzhou 213003,China;Office of Medical Insurance,the First People’s Hospital of Changzhou,Jiangsu Changzhou 213003,China;Dept.of Neurology,the First People’s Hospital of Changzhou,Jiangsu Changzhou 213003,China)
机构地区:[1]常州市第一人民医院药学部,江苏常州213003 [2]常州市第一人民医院医保办公室,江苏常州213003 [3]常州市第一人民医院神经内科,江苏常州213003
出 处:《中国药房》2024年第13期1558-1563,共6页China Pharmacy
基 金:常州市科技计划项目(No.CJ20239009,No.CM20223005)。
摘 要:目的 优化疾病诊断相关分组(DRG)的临床用药目录,减少患者药品费用,提高DRG结付率。方法 选取某院神经内科BR23疾病组作为研究对象,应用数据挖掘技术,探索疾病组的用药规律,并利用药品综合评价方法对重点监测药品进行评分,进而优化疾病组的临床用药目录。选取2022年12月入组该疾病组患者的住院信息作为优化前数据,2023年9月入组该疾病组患者的住院信息作为优化后数据,通过比较两组患者的医疗质量及药品费用数据来评价优化目录的实施效果。结果 优化临床用药目录后,该疾病组的结付率由优化前的84.36%上升至104.70%,住院药品费用及住院总费用均显著降低(P<0.05),重点监测药品使用量明显下降。结论 数据挖掘技术有助于探索疾病组临床用药规律;药师可以此为依据,通过有效药学干预手段提高DRG结付率。OBJECTIVE To optimize the clinical drug list of diagnosis-related group(DRG),reduce the drug cost of patients,and increase the DRG settlement rate.METHODS By selecting BR23 disease group in the department of neurology of a hospital as the research object,data mining technology was used to explore the medication rule of the disease group,and the key monitored drugs were scored by comprehensive evaluation of drugs,thus optimizing the clinical drug list of disease groups.The hospitalization information of patients enrolled in the disease group in December 2022 was selected as the pre-optimization data,and the hospitalization information of patients enrolled in the disease group in September 2023 was selected as the post-optimization data.The implementation effect of the optimized list was evaluated by comparing the medical quality and drug cost data between the two groups.RESULTS After optimizing the clinical drug list,the settlement rate of this disease group increased from 84.36%before optimization to 104.70%;there was significant reduction in hospitalization drug cost and total hospitalization cost(P<0.05);the consumption of key monitored drugs significantly decreased.CONCLUSIONS Data mining technology helps explore the clinical medication rules of disease groups,which can be used by pharmacists to improve the settlement rate of DRG through effective pharmaceutical intervention.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:52.15.225.105