低空无人机实时探测的PBE-YOLOv8n算法  被引量:1

PBE-YOLOv8n Algorithm for Real-Time Detection of a Low Altitude UAV

在线阅读下载全文

作  者:郭汝昂 任帅 张航 Guo Ruang;Ren Shuai;Zhang Hang(School of Computer Science,Xi'an Shiyou University,Xi'an 710065,China)

机构地区:[1]西安石油大学计算机学院,西安710065

出  处:《信息化研究》2024年第2期24-33,共10页INFORMATIZATION RESEARCH

摘  要:面向低空无人机“黑飞”“滥飞”带来的威胁,针对现存低空无人机目标检测算法检测精度较低、实时性较差的问题,本文提出一种基于YOLOv8n改进的PBE-YOLOv8n低空无人机目标检测模型。使用局部卷积(PConv)代替普通卷积(Conv),设计全新的快速跨阶段局部层卷积(C2f_Faster)模块代替跨阶段局部层卷积(C2f)以实现模型轻量化;使用黄金集散(Gold-YOLO)结构替换颈部路径聚合网络(PANet)结构,保留更多渐层特征,提高检测精确性;在颈部网络中引入高效多尺度注意力(EMA)机制,捕捉局部重要信息,以提高模型的特征融合能力;使用智能交并比(WIoU)边界损失函数代替原损失函数,提升网络的边界框回归性能。实验结果表明,本文提出的PBE-YOLOv8n算法在精确度和速度上都有所提升,证明了该改进算法的有效性和先进性。An improved PBE-YOLOv8n low-altitude UAV target detection model is proposed to address the issues of low detection accuracy and poor real-time performance in existing low-altitude UAV target detec-tion algorithms for the threats posed by unauthorized and uncontrolled drone activities("black-fly"and"illegal-fly").The model is based on YOLOv8n with modifications.PBE-YOLOv8n incorporates partial convolution PConv instead of common Conv layers to achieve model light weighting.A new CSPLayer_2Conv_faster C2f Faster module is designed to replace part of CSPLayer_2Conv C2f for improved real-time performance.The Path Aggregation Network(PANet)structure in the neck part is replaced with Gold-YOLO to preserve more gradient features and enhance detection accuracy.Efficient Multi-Scale Attention(EMA)is introduced in the neck network to capture local important information for improved feature fusion capability.The original loss function is replaced with the Wise Intersection over Union(WIoU)boundary loss function to enhance the network's bounding box regression performance.Experimental results demonstrate that the proposed PBE-YOLOv8n algorithm achieves improvements in both accuracy and speed,validating the effectiveness and ad-vancement of the improved algorithm.

关 键 词:YOLOv8 低空无人机 快速跨阶段局部层卷积 黄金集散 高效多尺度注意力 智能交并比 

分 类 号:TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象