Boundary Regularity of Isometries Between Infinitely Flat Complex Domains  

在线阅读下载全文

作  者:Jin Song LIU Fei TAO Hong Yu WANG 

机构地区:[1]Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,P.R.China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,P.R.China [3]Beijing International Center for Mathematical Research,Peking University,Beijing 100871,P.R.China [4]School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,P.R.China [5]Key Laboratory of Mathematics and Information Networks(Beijing University of Posts and Telecommunications),Ministry of Education,Beijing 100876,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2024年第6期1375-1387,共13页数学学报(英文版)

基  金:supported by National Key R&D Program of China(Grant No.2021YFA1003100);NSFC(Grant Nos.11925107 and 12226334);Key Research Program of Frontier Sciences,CAS(Grant No.ZDBS-LY-7002);supported by the Young Scientist Program of the Ministry of Science and Technology of China(Grant No.2021YFA1002200);NSFC(Grant No.12201059)。

摘  要:In this paper we prove that isometries with respect to the Kobayashi metric between certain domains having boundary points at which the boundary is infinitely flat extend continuously to the boundary.The strategy is to reestablish the Gehring-Hayman-type Theorem for these complex domains.Furthermore,the regularity of boundary extension map is given.

关 键 词:Boundary extension Kobayashi metric ISOMETRIES 

分 类 号:O174.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象