深度学习技术对胃肠道间质瘤与平滑肌瘤超声内镜图像的鉴别诊断价值  

Value of deep learning technology for the differential diagnosis of endoscopic ultrasonography images of gastrointestinal stromal tumors and leiomyomas

在线阅读下载全文

作  者:郭康丽 朱建伟 黄张浩 刘纯平[3] 胡端敏[2] Guo Kangli;Zhu Jianwei;Huang Zhanghao;Liu Chunping;Hu Duanmin(The Second Department of Gastroenterology,Affiliated Hospital of Hubei University of Arts and Science,Xiangyang Central Hospital,Xiangyang 441021,China;Department of Gastroenterology,The Second Affiliated Hospital of Soochow University,Suzhou 215004,China;School of Computer Science and Technology,Soochow University,Suzhou 215006,China)

机构地区:[1]湖北文理学院附属医院、襄阳市中心医院消化二科,襄阳441021 [2]苏州大学附属第二医院消化内科,苏州215004 [3]苏州大学计算机科学与技术学院,苏州215006

出  处:《中华消化内镜杂志》2024年第6期449-454,共6页Chinese Journal of Digestive Endoscopy

基  金:苏州市“科教兴卫”青年科技项目(KJXW2019013)。

摘  要:目的尝试构建基于深度学习技术的胃肠道间质瘤(gastrointestinal stromal tumors,GISTs)与平滑肌瘤(leiomyomas,LM)超声内镜图像分类模型,并验证其鉴别诊断价值。方法回顾性纳入2014年10月至2021年10月在苏州大学附属第二医院接受超声内镜检查且经外科手术或内镜下切除后病理确诊的69例GISTs和73例LM病例,每例病例选取1张清晰且有典型病变的超声内镜图片,利用留出法将每种疾病图片按训练集图片数比验证集图片数为8∶2的比例分入训练集和验证集,最终由113张(55张GISTs和58张LM)超声内镜图片组成训练集,由29张(14张GISTs和15张LM)超声内镜图片组成验证集,训练集用于对深度学习模型进行训练与优化,验证集用于对分类模型进行验证,主要观察指标包括鉴别诊断的灵敏度、特异度、阳性预测值、阴性预测值和准确率。结果利用Resnet 34网络结构建立的分类模型对GISTs与LM进行鉴别诊断的准确率趋于0.89,较Resnet 50网络结构建立的分类模型(0.81)的分类性能更佳。基于Resnet 34网络结构构建的分类模型对验证集中超声内镜图片进行鉴别诊断的灵敏度、特异度、阳性预测值、阴性预测值和准确率分别为85.71%(12/14)(95%CI:67.38%~100.00%)、93.33%(14/15)(95%CI:80.71%~100.00%)、92.31%(12/13)(95%CI:77.82%~100.00%)、87.50%(14/16)(95%CI:71.30%~100.00%)和89.66%(26/29)(95%CI:78.57%~100.00%)。结论深度学习技术用于GISTs与LM超声内镜图像的鉴别诊断是可行的,可为临床医师对两者的鉴别提供辅助诊断意见。基于Resnet 34网络结构建立的深度学习模型对GISTs与LM超声内镜图像进行鉴别诊断的准确性较高。Objective To construct a classification model for endoscopic ultrasonography(EUS)images of gastrointestinal stromal tumors(GISTs)and leiomyomas(LM)based on deep learning technology,and to verify its value for differential diagnosis.Methods From October 2014 to October 2021,69 patients of GISTs and 73 of LM who underwent EUS and were pathologically confirmed by surgery or endoscopic resection in the Second Affiliated Hospital of Soochow University were retrospectively studied.One clear EUS image with typical lesion was selected for each case.Using the hold-out method,the images of each disease were divided into the training set and the validation set according to the ratio of the number of images in the training set to the number of images in the validation set,which was 8∶2.Finally,113 EUS images(55 GISTs and 58 LM)were used to form the training set,and 29 EUS images(14 GISTs and 15 LM)were used to form the validation set.The training set was used to train and optimize the deep learning model,and the validation set was used to verify the classification model.The main observation indicators included the sensitivity,the specificity,the positive predictive value,the negative predictive value and the accuracy of differential diagnosis.Results The accuracy of the classification model established by Resnet 34 network structure in the differential diagnosis of GISTs and LM tended to be 0.89,better than the classification model established by Resnet 50 network structure(0.81).The sensitivity,the specificity,the positive predictive value,the negative predictive value and the accuracy of the classification model based on Resnet 34 network structure for differentiating EUS images in the validation set were 85.71%(12/14,95%CI:67.38%-100.00%),93.33%(14/15,95%CI:80.71%-100.00%),92.31%(12/13,95%CI:77.82%-100.00%),87.50%(14/16,95%CI:71.30%-100.00%)and 89.66%(26/29,95%CI:78.57%-100.00%),respectively.Conclusion It is feasible to use deep learning technology in the differential diagnosis of EUS images of GISTs and LM,which can pr

关 键 词:人工智能 深度学习 超声内镜检查术 胃肠道间质瘤 平滑肌瘤 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] R735[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象