检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张家安 邓强 马增强 李志军 Zhang Jia'an;Deng Qiang;Ma Zengqiang;Li Zhijun(School of Electrical Engineering,Hebei University of Technology,Tianjin 300130,China;School of Artificial Intelligence,Hebei University of Technology,Tianjin 300130,China;School of Electrical and Electronic Engineering,Shijiazhuang Railway University,Shijiazhuang 050043,China)
机构地区:[1]河北工业大学电气工程学院,天津300130 [2]河北工业大学人工智能与数据科学学院,天津300130 [3]石家庄铁道大学电气与电子工程学院,石家庄050043
出 处:《电子测量技术》2024年第7期170-176,共7页Electronic Measurement Technology
基 金:河北省自然科学基金创新集体项目(E2020202142)资助。
摘 要:由于风力发电机组的非平稳运行条件和周围恶劣的工作环境,风机轴承故障振动脉冲特征易被随机噪声干扰所淹没,这给准确检测滚动轴承故障造成了挑战。为了降低随机干扰对后续特征提取的影响和算法复杂度,提出了一种改进多头自注意力机制(IMHSA)-多尺度卷积网络(MSCNN)-双向长短期记忆网络(BiLSTM)的风机轴承故障诊断方法。首先,由周期空洞自注意力和局部自注意力组成的IMHSA对特征进行增强,以减少随机干扰影响及特征增强过程中的时间消耗;然后,利用MSCNN-BiLSTM网络提取故障信号中的空间特征与长期依赖特征;最后,经全连接层和Softmax层输出风机轴承故障诊断结果,并采用实验台滚动轴承实际运行数据进行算例分析,通过与领域内其他同类方法的对比,验证了所提方法的有效性和优越性。Due to the non-stationary operating conditions and harsh working environment of wind turbines,the vibration pulse characteristics of wind turbine bearing faults are easily overwhelmed by random noise interference,which poses a challenge to accurately detect rolling bearing faults.In order to reduce the impact of random interference on subsequent feature extraction and algorithm complexity,an improved multi head self attention mechanism(IMHSA)-multi-scale convolutional network(MSCNN)-bidirectional long short-term memory network(BiLSTM)wind turbine bearing fault diagnosis method is proposed.Firstly,the IMHSA composed of periodic cavity self attention and local self attention enhances the features to reduce the impact of random interference and the time consumption during the feature enhancement process;Then,the MSCNN-BiLSTM network is used to extract spatial features and long-term dependency features from the fault signal;Finally,the fault diagnosis results of the fan bearings were output through the fully connected layer and Softmax layer,and the actual operating data of the rolling bearings on the experimental platform was used for numerical analysis.The effectiveness and superiority of the proposed method were verified by comparing it with other similar methods in the field.
关 键 词:风机轴承故障诊断 改进多头自注意力机制 多尺度卷积网络 双向长短期记忆网络
分 类 号:TH133.3[机械工程—机械制造及自动化] TN911.6[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.141.164.124