Learned Distributed Query Optimizer:Architecture and Challenges  

在线阅读下载全文

作  者:GAO Jun HAN Yinjun LIN Yang MIAO Hao XU Mo 

机构地区:[1]Peking University,Beijing 100871,China [2]ZTE Corporation,Shenzhen 518057,China

出  处:《ZTE Communications》2024年第2期49-54,共6页中兴通讯技术(英文版)

基  金:partially supported by NSFC under Grant Nos.61832001 and 62272008;ZTE Industry-University-Institute Fund Project。

摘  要:The query processing in distributed database management systems(DBMS)faces more challenges,such as more operators,and more factors in cost models and meta-data,than that in a single-node DMBS,in which query optimization is already an NP-hard problem.Learned query optimizers(mainly in the single-node DBMS)receive attention due to its capability to capture data distributions and flexible ways to avoid hard-craft rules in refinement and adaptation to new hardware.In this paper,we focus on extensions of learned query optimizers to distributed DBMSs.Specifically,we propose one possible but general architecture of the learned query optimizer in the distributed context and highlight differences from the learned optimizer in the single-node ones.In addition,we discuss the challenges and possible solutions.

关 键 词:distributed query processing query optimization learned query optimizer 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象