Fault DiagnosisMethod of Energy Storage Unit of Circuit Breakers Based on EWT-ISSA-BP  

在线阅读下载全文

作  者:Tengfei Li Wenhui Zhang Ke Mi Qingming Lin Shuangwei Zhao Jiayi Song 

机构地区:[1]Puneng Electric Power Technology Engineering Branch,Shanghai Hengnengtai Enterprise Management Co.,Ltd.,Shanghai,200437,China [2]School of Electrical Engineering,Sichuan University,Chengdu,610065,China

出  处:《Energy Engineering》2024年第7期1991-2007,共17页能源工程(英文)

基  金:This research was funded by Sichuan Science and Technology Program(2023YFSY0013).

摘  要:Aiming at the problem of energy storage unit failure in the spring operating mechanism of low voltage circuit breakers(LVCBs).A fault diagnosis algorithm based on an improved Sparrow Search Algorithm(ISSA)optimized Backpropagation Neural Network(BPNN)is proposed to improve the operational safety of LVCB.Taking the 1.5kV/4000A/75kA LVCB as an example.According to the current operating characteristics of the energy storage motor,fault characteristics are extracted based on Empirical Wavelet Transform(EWT).Traditional BPNN has problems such as difficulty adjusting network weights and thresholds,being sensitive to initial weights,and quickly falling into local optimal solutions.The Sparrow Search Algorithm(SSA)with self-adjusting weight factors combined with bidirectional mutations is added to optimize the selection of BPNN hyperparameters.The results show that the ISSA-BPNN can accurately and quickly distinguish six conditions of motor voltage reduction:motor voltage increase,motor voltage decrease,energy storage spring stuck,transmission gear stuck,regular state and energy storage spring not locked.It is suitable for fault diagnosis and detection of the energy storage part of LVCB.

关 键 词:Low voltage circuit breakers energy storage motor current sparrow search algorithm empirical wavelet transform fault diagnosis 

分 类 号:TM561[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象