基于改进灰色模型的钢铁工业生产能耗预测研究  

Research on Energy Consumption Prediction of Steel Industry Production Based on Improved Grey Models

在线阅读下载全文

作  者:邓高 李琪 DENG Gao;LI Qi(Hunan Iron and Steel Group Co.,Ltd.,Changsha 410004,Hunan,China)

机构地区:[1]湖南钢铁集团有限公司,湖南长沙410004

出  处:《黄金科学技术》2024年第3期548-558,共11页Gold Science and Technology

摘  要:在双碳目标背景下,开展钢铁工业生产能耗预测研究对于钢铁工业降低生产能耗和提升效益具有重要作用。为科学预测钢铁工业生产能耗,基于2010—2022年钢铁能耗数据,通过建立DNGM(1,1)、IDGM(1,1)和DDGM(1,1)3种改进的灰色预测模型,对吨钢综合能耗和吨钢可比能耗进行数据预测和误差对比分析,选出最优模型,得到2023—2025年吨钢综合能耗和吨钢可比能耗预测结果。研究表明:灰色预测模型在钢铁能耗预测中具有可行性和适应性;DNGM(1,1)模型在钢铁工业生产能耗预测中整体模拟性能最优;2023—2025年吨钢综合能耗和吨钢可比能耗将持续下降。基于研究结果,建议我国钢铁行业进一步优化生产工艺和技术,改善能源结构,并加大对节能减排技术研发的投资,以达到节能降耗的效果,促进节能减碳目标的早日实现。Under the background of double carbon target,the research on energy consumption prediction of steel industry plays an important role in reducing production efficiency and improving efficiency of steel industry.In order to scientifically predict the energy consumption of steel industry production,based on the data of iron and steel energy consumption from 2010 to 2022,three improved grey prediction models of DNGM(1,1),IDGM(1,1)and DDGM(1,1)were established to predict the comprehensive energy consumption per ton of steel and the comparable energy consumption per ton of steel.The data prediction and error comparison analysis were carried out to select the optimal model and obtain the prediction results from 2023 to 2025.The results show that the grey prediction model is feasible and adaptable in the prediction of steel energy consumption.The DNGM(1,1)model has the best overall simulation performance in the prediction of energy consumption in steel industry production.The comprehensive energy consumption per ton of steel and the comparable energy consumption per ton of steel will continue to decline from 2023 to 2025.

关 键 词:钢铁工业 吨钢综合能耗 吨钢可比能耗 灰色预测模型 改进灰色模型 

分 类 号:TF4[冶金工程—钢铁冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象