基于压缩感知自适应测量矩阵的空气质量主动采样  

Active Sampling of Air Quality Based on Compressed Sensing Adaptive Measurement Matrix

在线阅读下载全文

作  者:黄伟杰 郭贤伟 於志勇[1,2] 黄昉菀[1,2] HUANG Weijie;GUO Xianwei;YU Zhiyong;HUANG Fangwan(College of Computer and Data Science,Fuzhou University,Fuzhou 350108,China;Fujian Key Laboratory of Network Computing and Intelligent Information Processing(Fuzhou University),Fuzhou 350108,China)

机构地区:[1]福州大学计算机与大数据学院,福州350108 [2]福建省网络计算与智能信息处理重点实验室(福州大学),福州350108

出  处:《计算机科学》2024年第7期116-123,共8页Computer Science

基  金:国家自然科学基金(61772136);福建省引导性项目(2020H0008);福建省中青年教师教育科研项目(JAT210007)。

摘  要:随着城市化进程的不断加快,工业发展、人口聚集使得空气质量问题日益严峻。出于对采集成本的考虑,对空气质量的主动采样正受到越来越多的关注。但现有模型要么只能迭代选择采样位置,要么难以实时更新采样算法。基于此,提出了一种基于压缩感知自适应测量矩阵的空气质量主动采样方法,将采样位置的选择问题转化为矩阵的列子集选择问题。该方法首先利用历史完整数据进行字典学习,然后将学习后的字典经过列子集选择后得到能够指导批量采样的自适应测量矩阵,最后结合利用空气质量数据特性构建的稀疏基矩阵恢复出未采样的数据。该方法使用压缩感知模型一体化实现采样和推断,避免了使用多个模型的不足。此外,考虑到空气质量的时序变动问题,在每一次的主动采样后,字典还会利用最新数据进行在线更新以指导下一次的采样。两个真实数据集上的实验结果表明,经过字典学习后得到的自适应测量矩阵在低于20%的多个采样率下,恢复性能优于所有基线。With the continuous acceleration of urbanization,industrial development and population agglomeration make the pro-blem of air quality increasingly serious.Due to the cost of sampling,more and more attention is paid to active sampling of air qua-lity.However,the existing models can either only select the sampling location iteratively or hardly update the sampling algorithm in real time.Motivated by this,an active sampling method of air quality based on compressed sensing adaptive measurement matrix is proposed in this paper.The problem of sampling location selection is transformed into the column subset selection problem of the matrix.Firstly,the historical complete data is used for dictionary learning.After column subset selection of the learned dictionary,an adaptive measurement matrix that can guide batch sampling is obtained.Finally,the unsampled data is recovered by using the sparse basis matrix constructed by the data characteristics of air quality.This method uses a compressed sensing model to realize sampling and inference integrally,which avoids the shortcoming of using multiple models.In addition,considering the ti-ming variation of air quality,after each active sampling,the dictionary is updated online with the latest data to guide the next sampling.Experimental results on two real datasets show that the adaptive measurement matrix obtained after dictionary learning has better recovery performance than all baselines at multiple sampling rates less than 20%.

关 键 词:群智感知 压缩感知 自适应测量矩阵 字典学习 主动采样 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象