检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邓天睿 刘冉[1,2] 肖宇峰 郭林[1,2] 蓝发籍 王林 DENG Tianrui;LIU Ran;XIAO Yufeng;GUO Lin;LAN Faji;WANG Lin(School of Information Engineering,Southwest University of Science and Technology,Mianyang,Sichuan 621000,China;Robot Technology Used for Special Environment Key Laboratory of Sichuan Province,Mianyang,Sichuan 621000,China)
机构地区:[1]西南科技大学信息工程学院,四川绵阳621000 [2]特殊环境机器人技术四川省重点实验室,四川绵阳621000
出 处:《光电子.激光》2024年第7期691-698,共8页Journal of Optoelectronics·Laser
基 金:国家自然科学基金(12175187、12205245);国家重点研发计划(2019YFB1310805);四川省自然科学基金(2023NSFSC0505)资助项目。
摘 要:精准的三维(three-dimensional, 3D)目标识别对于机器人自主抓取至关重要,针对目前基于原始点对特征(point-pair feature, PPF)的三维目标识别算法中存在识别速度慢、严重遮挡场景下识别率低的问题,提出了一种基于曲率关键点的点对特征三维目标识别算法。该算法根据点云法向量邻域夹角均值,快速估算点云曲率,以此提取关键点,通过对关键点计算点对特征,剔除了模型点对特征哈希表中存在的大量冗余点对。使用结合位姿聚类和假设检验的位姿优化算法,首先通过位姿聚类对候选假设位姿进行优化,其次位姿聚类后采用ICP (iterative closest point)算法对候选位姿进行细化,最后利用基于重合度计算匹配分数的假设检验算法滤除错误假设并得出最佳假设位姿。实验结果表明,在公开数据集上,所提方法能够获得95.2%的平均识别率,减少模型点对特征哈希表构建时间并且提高在严重遮挡场景下的识别率。Three-dimensional(3D)target recognition plays a critical role in autonomous robot grasping.The original point-pair feature-based 3D target recognition methods are facing the challenges,such as slow recognition speed and poor recognition accuracy in severely occluded scenes.To address these issues,this paper proposes a 3D target recognition method based on the point-pair feature of curvature key points.First,the key points are extracted based on the curvature,which is estimated by mean angle of neighbored point cloud normal vector in a point cloud.Second,the point-pair features are established for key points to eliminate redundant point pairs in the point-pair feature Hash table.Third,through processes of pose clustering and hypothesis verification,the pose optimization is achieved.In particular,we optimize the candidate poses by pose clustering and then refine the pose by the iterative closest point(ICP)algorithm.Finally,the incorrect poses are eliminated by the hypothesis verification of poses according to the overlap score.The hypothesis of optimal posture is obtained.The experiment results show that the proposed method achieves an average recognition accuracy of 95.2%on a public dataset,and significantly reduce the construction time of the point-pair feature Hash table,while enhancing the recognition performance in severely occluded scenes.
关 键 词:三维(3D)目标识别 点对特征 关键点提取 假设检验
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7