拓扑优化-拉压杆模型方法设计钢筋混凝土开孔深梁的仿真研究  

Simulation study on reinforced concrete deep beams with openings designed using topology optimization-STM method

在线阅读下载全文

作  者:孟灿 李可飞 周志锦 张鹄志[2] MENG Can;LI Kefei;ZHOU Zhijin;ZHANG Huzhi(Xiangtan Architectural Design Institute Group Co.,Ltd.,Xiangtan 411199,China;School of Civil Engineering,Hunan University of Science and Technology,Xiangtan 411201,China)

机构地区:[1]湘潭市建筑设计院集团有限公司,湖南湘潭411199 [2]湖南科技大学土木工程学院,湖南湘潭411201

出  处:《邵阳学院学报(自然科学版)》2024年第3期38-47,共10页Journal of Shaoyang University:Natural Science Edition

基  金:湖南省自然科学基金面上项目(2021JJ30270)。

摘  要:为了提高钢筋混凝土深梁设计的合理性,提出一种拓扑优化-拉压杆模型(strut-and-tie model, STM)设计方法,并展开与中国现行规范推荐的经验设计方法的对比研究。共设计了3组6根钢筋混凝土开孔深梁,开展了相应的非线性有限元静力仿真。结果表明,采用拓扑优化-STM方法设计的构件不仅能在减少15%~25%钢筋用量的情况下提升20%以上的承载力和30%左右的变形能力,而且可以减少孔洞角部等应力较大处的混凝土拉损伤,提升这些部位钢筋的利用率。因此,拓扑优化-STM方法可为日后的钢筋混凝土开孔深梁设计提供参考。To improve design rationality,a topology optimization-strut-and-tie model(STM)design method for reinforced concrete deep beams was proposed.A comparative study was performed between the method and the empirical design approach recommended by current Chinese standard codes.Six reinforced concrete deep beams with openings were divided into three groups for design,followed by corresponding nonlinear finite element static simulations.The results findings reveal that beams designed using the topology optimization-STM method can achieve an increase of over 20%in load-bearing capacity and about 30%in deformation capability,while reducing the amount of steel bars by 15%~25%.Additionally,these beams mitigated concrete tension damage in high-stress areas,notably in the corners of openings.The reduction in tension damage improved the efficiency of reinforcement utilization in these specific regions.Conclusively,the topology optimization-STM method offers valuable insights for future designs of reinforced concrete deep beams with openings.

关 键 词:钢筋混凝土开孔深梁 拓扑优化 拉压杆模型 经验设计方法 

分 类 号:TU375[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象