基于遗传算法及有限元仿真的变压器热点处纸绝缘老化状态表征方法  

Characterization Method of Paper Insulation Aging State at Transformer Hot Spots Based on Genetic Algorithm and Finite Element Simulation

在线阅读下载全文

作  者:陆炳荣 王清印 LU Bingrong;WANG Qingyin(China Energy Investment Corporation Beihai Power Generation Co.,Ltd.,Beihai 536017,China;Electrical Engineering School,Guangxi University,Nanning 530004,China)

机构地区:[1]国能广投北海发电有限公司,广西北海536017 [2]广西大学电气工程学院,广西南宁530004

出  处:《湖南电力》2024年第3期40-47,共8页Hunan Electric Power

基  金:国能广投北海发电有限公司科技项目(BHDC-2023-FW-033)。

摘  要:现有的基于频域介电谱(frequency domain spectroscopy,FDS)的评估方法无法反映热点处的绝缘老化状态,针对此问题,将多目标遗传算法和有限元仿真方法相结合,提出一种“反演模型”以获取变压器高温区域纸绝缘老化信息。构建非均匀老化下油纸绝缘有限元模型,建立不同老化区域油纸绝缘老化状态和FDS数据之间的映射关系。基于测量的油纸绝缘系统的FDS数据,设计多目标遗传算法求解有限元模型中的参数分布。实验结果表明,所提取的有限元仿真模型参数可以很好地表征热点区域绝缘纸的老化状态,在实验室条件下,模型的相对误差小于7%。Current assessment method based on frequency domain dielectric spectrum(FDS)cannot reflect the aging state of the insulation at the hot spots.Therefore,an“inverse model”is proposed by combining multi-objective genetic algorithm and finite element simulation method to obtain the aging information of paper insulation in high-temperature areas of transformers.A finite element model of oil-paper insulation under non-uniform aging is constructed,which can establish the mapping relationship between the aging state of oil-paper insulation and FDS data in different aging regions.Based on the measured FDS data of the oil-paper insulation system,a multi-objective genetic algorithm is designed to solve the parameter distribution in the finite element model.The validation experiment results show that the extracted parameters of the FEM simulation model can well characterize the aging state of the paper insulation in the hot spot area and the relative error of the model is less than 7%under laboratory conditions.

关 键 词:频域介电谱 油纸绝缘 非均匀老化 变压器 有限元仿真 

分 类 号:TM403.3[电气工程—电器]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象