一类新的单机工期指派模糊调度算法研究  

A New Fuzzy Scheduling Algorithm for Single Machine Duration Assignment

在线阅读下载全文

作  者:易国荣 李金权[2] 顾文豪 YI Guorong;LI Jinquan;GU Wenhao(School of Information Technology,Beijing Institute of Technology,Zhuhai 519088,China;School of Applied Mathematics,Beijing Normal University,Zhuhai 519087,China;Faculty of Arts and Sciences,Beijing Normal University,Zhuhai 519087,China)

机构地区:[1]北京理工大学(珠海)信息学院,广东珠海519088 [2]北京师范大学珠海分校应用数学学院,广东珠海519087 [3]北京师范大学文理学院,广东珠海519087

出  处:《聊城大学学报(自然科学版)》2024年第4期1-13,共13页Journal of Liaocheng University:Natural Science Edition

基  金:国家自然科学基金项目(11971065)资助。

摘  要:研究了单机模糊环境下,如何安排工件加工顺序和指定工件工期,使得提前完工和拖期完工惩罚总费用均值最小的工期指派调度优化问题。在该类调度问题中,工件的加工时间为非对称三角模糊数;总费用的均值用模糊数的加权可能性均值来计算。针对一类权函数族,给出了该类权函数族下的工件最优工期的计算方法,基于该最优工期,给出了排序的最优调度算法,并证明了该类工期设定问题是多项式可解的。数值实验中针对工件完工时间服从不同的非对称分布的情形,与现有的方法比较,结果表明给出的方法能更有效的降低费用。In this paper,a single machine due date assignment scheduling optimization problem in fuzzy environment is investigated,which objective function is to minimize the total cost of earliness-tardiness penalties by arranging the processing sequence of jobs and setting due dates for each job.In this type of scheduling problem,asymmetric triangular fuzzy numbers are used to describe the processing times of jobs,and weighted possible mean value of fuzzy numbers is used to compute the average value of the total costs of penalties;Based on a kind of weight functions,the optimal due dates of each job are obtained,and moreover,a new scheduling algorithm is proposed;Based on this type of method,it has been proven that the problem investigated in this pater is polynomial solvable.In numerical experiments,when the completion time of the jobs follows different asymmetric distributions,compared with existing methods,the results show that the method proposed in this paper can more effectively reduce costs.

关 键 词:工期指派 模糊调度 非对称三角模糊数 

分 类 号:O22[理学—运筹学与控制论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象