检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张瀚予 周利娜 刘钺强 郝广周 王硕 杨旭 苗雨田 段萍 陈龙 Hanyu ZHANG;Lina ZHOU;Yueqiang LIU;Guangzhou HAO;Shuo WANG;Xu YANG;Yutian MIAO;Ping DUAN;Long CHEN(College of Science,Dalian Maritime University,Dalian 116026,People’s Republic of China;General Atomics,San Diego 92186-5608,United States of America;Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China;Chongqing Key Laboratory of Intelligent Perception and BlockChain Technology,Chongqing Technology and Business University,Chongqing 400067,People’s Republic of China)
机构地区:[1]College of Science,Dalian Maritime University,Dalian 116026,People’s Republic of China [2]General Atomics,San Diego 92186-5608,United States of America [3]Southwestern Institute of Physics,Chengdu 610041,People’s Republic of China [4]Chongqing Key Laboratory of Intelligent Perception and BlockChain Technology,Chongqing Technology and Business University,Chongqing 400067,People’s Republic of China
出 处:《Plasma Science and Technology》2024年第5期17-28,共12页等离子体科学和技术(英文版)
基 金:supported by National Natural Science Foundation of China (Nos. 12205033, 12105317, 11905022 and 11975062);Dalian Youth Science and Technology Project (No. 2022RQ039);the Fundamental Research Funds for the Central Universities (No. 3132023192);the Young Scientists Fund of the Natural Science Foundation of Sichuan Province (No. 2023NSFSC1291)
摘 要:Many magnetohydrodynamic stability analyses require generation of a set of equilibria with a fixed safety factor q-profile while varying other plasma parameters.A neural network(NN)-based approach is investigated that facilitates such a process.Both multilayer perceptron(MLP)-based NN and convolutional neural network(CNN)models are trained to map the q-profile to the plasma current density J-profile,and vice versa,while satisfying the Grad–Shafranov radial force balance constraint.When the initial target models are trained,using a database of semianalytically constructed numerical equilibria,an initial CNN with one convolutional layer is found to perform better than an initial MLP model.In particular,a trained initial CNN model can also predict the q-or J-profile for experimental tokamak equilibria.The performance of both initial target models is further improved by fine-tuning the training database,i.e.by adding realistic experimental equilibria with Gaussian noise.The fine-tuned target models,referred to as fine-tuned MLP and fine-tuned CNN,well reproduce the target q-or J-profile across multiple tokamak devices.As an important application,these NN-based equilibrium profile convertors can be utilized to provide a good initial guess for iterative equilibrium solvers,where the desired input quantity is the safety factor instead of the plasma current density.
关 键 词:plasma equilibrium deep learning safety factor profile current density profile TOKAMAK
分 类 号:TL631.24[核科学技术—核技术及应用] TL612
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.149.165