机构地区:[1]中国地质大学(北京)信息工程学院,北京100083 [2]中国地质大学(北京)国家岩矿化石标本资源库,北京100083
出 处:《地学前缘》2024年第4期37-46,共10页Earth Science Frontiers
基 金:国家科技资源共享服务平台——国家岩矿化石标本资源库子项目(NCSTI-RMF20230107)。
摘 要:已有相关矿物数据库用于存储和查询相关矿物知识,常用的搜索引擎也可以对矿物知识进行查询,但无法回答用自然语言进行提问的矿物问题,查询返回的答案需要进一步筛选。亦有基于知识图谱进行矿物知识问答的相关研究,但只能回答涉及知识图谱中一个三元组的简单问题,无法回答涉及多个三元组的多跳复杂问题。为此,本文提出基于知识图谱多跳推理的矿物复杂知识问答方法,采用ComplEx模型将矿物实体、关系和问句表示为复数向量,以更好地获取相互之间的语义及推理关系。输入矿物问句后,通过Bert-LSTM-CRF获取其中心词,采用基于编辑距离及分词的方法获得中心词的候选实体集合,然后采用全连接网络确定最相关的实体作为推理起点,与矿物问句拼接后通过全连接网络获得当前跳的最相关关系。根据当前跳的起始实体及最相关关系,在矿物知识图谱中获得另一实体作为下一跳的推理起点,并将下一跳的问句更新为原问句,与当前跳最相关关系拼接,以将当前跳的推理信息带入到下一跳推理中,直到获得的最相关推理关系为预定义的结束标识符,推理结束,返回最后一跳的实体为答案,并给出推理路径。采用Python语言,在Tensorflow框架下实现了本文提出的矿物复杂知识问答并与相关模型进行对比,证明了本文方法的有效性。采用前后端分离架构,使用RESTful API、React、Ajax、echarts和Flask等框架和技术,开发了基于知识图谱多跳推理的矿物复杂知识问答系统,为矿物知识获取及相关地质研究提供了平台和工具。Mineral knowledge is important for geosciences research.Some mineral databases are used for storing and retrieving mineral knowledge,and common search engines can also answer mineral questions.But the mineral databases cannot answer mineral questions in natural language and the answers returned from the common search engines need to be filtered.To solve the above problems knowledge graphs have been used;however,the current mineral question-answering based on knowledge graphs can only answer simple questions involving one triplet,but not complex questions involving multiple triplets and multi-hop reasoning.This paper presents a mineral question-answering system based on multi-hop reasoning in knowledge graphs.The mineral entities,relations and questions are first transformed into vectors of complex domain to obtain their semantic and reasoning relations by using the ComplEx model,and Bert-LSTM-CRF is applied to obtain the head of the question.Candidate entities of the head are then obtained by calculating the edit distance and word segmentation,and a fully connected network is constructed to obtain the most related entity of the head of the question from the candidate entities and the entity is the start of the reasoning.Next,the entity and question vectors are concatenated into an input vector into the fully connected network to get their most related relation;afterward another entity most related to the starting entity/relation can be obtained from the mineral knowledge graph to start the reasoning of the next hop;the question of the next hop is updated by the concatenated vector of this hop to bring the reasoning information of this hop to the next hop.This process continues until the most related relation obtained is the stop sign predefined.The last entity obtained in this process is the answer to the question and the reasoning path is also remembered.This method is implemented using Python under Tensorflow and compared with related methods,which show the effectiveness of the method.Using this method,a questi
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...