一种低复杂度的正交时频空系统接收机设计  被引量:5

Low Complexity Receiver Design for Orthogonal Time Frequency Space Systems

在线阅读下载全文

作  者:廖勇[1] 李雪[1] LIAO Yong;LI Xue(School of Microelectronics and Communication Engineering,Chongqing University,Chongqing 400044,China)

机构地区:[1]重庆大学微电子与通信工程学院,重庆400044

出  处:《电子与信息学报》2024年第6期2418-2424,共7页Journal of Electronics & Information Technology

基  金:重庆市自然科学基金(CSTB2023NSCQ-MSX0025)。

摘  要:正交时频空(OTFS)调制可以将时间和频率选择性信道转换为时延-多普勒(DD)域的非选择性信道,这为高速移动场景建立可靠的无线通信提供了解决方案。然而,在车联网等复杂的多散射场景下,信道存在严重的多普勒间干扰(IDI),这给OTFS接收机信号的准确解调带来了极大的挑战。针对上述问题,该文提出一种联合稀疏贝叶斯学习(SBL)和阻尼最小二乘最小残差(d-LSMR)的OTFS接收机设计。首先,根据OTFS时域和DD域的关系,采用基扩展模型(BEM)将信道估计问题转换为基系数恢复问题,精准估计包括多普勒采样点在内的DD域信道。然后,提出一种高效的转换算法将基系数转换为信道等效矩阵。其次,将信道估计中估计得到的噪声,用于d-LSMR均衡器中进行信道均衡,并利用DD域信道矩阵的稀疏性实现快速收敛。系统仿真结果表明,与目前代表性的OTFS接收机相比,该文所提方案实现了更好的误码率性能,同时降低了计算复杂度。Orthogonal Time Frequency Space(OTFS)can convert the doubly-selective channels into nonselective channels in the Delay-Doppler(DD)domain,which provides a solution for establishing reliable wireless communication in high-mobility scenarios.However,serious Inter-Doppler Interference(IDI)exists in complex multi-scattering scenarios such as internet of vehicles,which brings great challenges to the accurate demodulation of OTFS receiver signals.To solve these problems,a kind of joint Sparse Bayesian Learning(SBL)and damped Least Square Minimum Residual(d-LSMR)OTFS receiver is proposed.Firstly,based on the relationship between OTFS time domain and DD domain,the channel estimation problem is transformed into a Basis Expansion Model(BEM)to accurately estimate DD domain channels including Doppler sampling points.Then,an efficient conversion algorithm is proposed to convert the basis coefficients into channel equivalent matrix.Additionally,the noise estimated in channel estimation is used in d-LSMR equalizer,and the sparse channel matrix in DD domain is adopted to achieve fast convergence.System simulation results show that compared with the current representative OTFS receiver,the proposed scheme achieves better bit error rate performance and reduces the computational complexity.

关 键 词:OTFS 信道估计 信道均衡 高速移动 稀疏贝叶斯学习 BEM 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象