检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔博 艾廷华[1] 杨敏[1] 吴昊 余华飞 肖天元 KONG Bo;AI Tinghua;YANG Min;WU Hao;YU Huafei;XIAO Tianyuan(School of Resource and Environmental Sciences,Wuhan University,Wuhan 430079,China)
机构地区:[1]武汉大学资源与环境科学学院,湖北武汉430079
出 处:《测绘学报》2024年第6期1154-1164,共11页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(42394065,42071450)。
摘 要:地貌类型识别是多因素联合影响下的复杂决策问题。由于地貌区域环境的广泛性、差异性及地学要素作用的复杂性,简单地引入人工智能方法,通过典型样本监督学习并不能获得该问题的满意结果。因此,本文尝试将等高线形态知识这种测绘自然智能与人工智能结合,在地形形态表达规则和典型地貌类型样本训练联合驱动下,开展混合智能下黄土地貌类型识别研究,提出了整合等高线形态知识与带池化操作图神经网络(graph neural network,GNN)的地貌类型识别方法。本文方法将地貌单元的等高线建模为图结构,并将提取的等高线顶点的形态知识嵌入图节点中,采用带池化操作的GNN模型,挖掘图结构中的高层次特征和上下文信息,以识别地貌类型识别。试验结果证明了本文方法在黄土地貌类型识别上的有效性:在测试数据上获得了86.1%的F 1值,比两个对比方法高出3.0%~8.2%。Landform type identification is a complex decision-making problem jointly affected by multi-factors.Due to the extensiveness and differences of landform regional environments and the complexity of the roles of geological elements,it is not possible to obtain satisfactory results by simply introducing artificial intelligence(AI)methods and supervising learning through typical samples.Thus,this study tries to integrate the knowledge of contour morphology as the natural intelligence in surveying and mapping into AI technology and carries out the research on loess landform type identification by hybrid intelligence integrating landform sample training and landform morphological representation rules.This paper presents a landform type recognition method that integrates contour morphological knowledge with the graph neural network(GNN).In this method,the contours of the landform unit are modeled as a graph structure composed of nodes and connecting edges,and the extracted contour vertex morphology knowledge is embedded in the graph nodes.A GNN model with pooling operations is used to mine high-level features and context information in the graph structure to identify unit types.The experimental results demonstrate the effectiveness of the proposed approach in identifying loess landform types,achieving an F 1 score of 86.1%on the test dataset,which represents a 3.0%~8.2%improvement over the two comparative methods.
分 类 号:P208[天文地球—地图制图学与地理信息工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.131.93.117