基于灰色Verhulst模型的矿区地表沉降预测研究  

Prediction of Surface Subsidence in Mining Area Based on Grey Verhulst Model

在线阅读下载全文

作  者:任桂香 Ren Guixiang(Lvliang Bureau of Planning and Natural Resources,Lishi Shanxi 033000,China)

机构地区:[1]吕梁市规划和自然资源局,山西离石033000

出  处:《山西冶金》2024年第5期102-104,共3页Shanxi Metallurgy

摘  要:灰色Verhulst模型是灰色系统理论模型的重要组成之一,对“S”形曲线具有良好的表现能力。针对灰色Verhulst模型在矿区地表沉降预测中的适用性问题,以灰色Verhulst模型为矿区地表沉降预测模型,以某煤矿综采工作面地表沉降监测数据为数据源,选取其中2个点(M36和M79)开展了灰色Verhulst模型地表沉降预测研究。同时,以后验差比C、小误差概率P和预测值平均相对误差综合进行模型预测精度评价。结果表明:M36和M79号点的预测结果P值均为1,C值分别为0.22和0.07,模型等级均为优秀。M36和M79号点的预测结果平均相对误差分别为1.18和0.27,与C、P值保持一致。灰色Verhulst模型可对地下采煤引起的地表移动初始期、活跃期和衰退期三个阶段开展全周期预测,是矿区地表沉降预测的适用性模型。Grey Verhulst model is one of the important components of grey system theoretical model,which has a good performance on"S"shaped curve.In view of the applicability of grey Verhulst model in mining area surface subsidence prediction,this paper takes grey Verhulst model as mining area surface subsidence prediction model.Taking the monitoring data of surface subsidence of fully mechanized mining face of a coal mine as data sources,two points M36 and M79 were selected to carry out the prediction research of surface subsidence with grey Verhulst model.At the same time,a posteriori ratio C,a small error probability P and the average relative error of the predicted value were integrated to evaluate the accuracy of the model prediction.The results showed that The P values of M36 and M79 were all 1,and the C values were 0.22 and 0.07,respectively,indicating that the model grades were excellent.The average relative errors of M36 and M79 were 1.18 and 0.27,which were consistent with the values of C and P.Grey Verhulst model can carry out full-cycle prediction for the three stages of surface movement caused by underground coal mining:initial period,active period and decline period,and is an applicable model for prediction of surface subsidence in mining areas.

关 键 词:灰色VERHULST模型 沉降预测 矿区地表沉降 

分 类 号:P258[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象