基于稠密连接网络的单矢量水听器目标方位估计  

Single vector hydrophone target direction estimation based on densenet

在线阅读下载全文

作  者:柯凯磊 孙德龙[1] KE Kailei;SUN Deong(Shanghai Marine Electronic Equipment Research Institute,Shanghai 201108,China)

机构地区:[1]上海船舶电子设备研究所,上海201108

出  处:《舰船科学技术》2024年第12期132-139,共8页Ship Science and Technology

摘  要:将方位估计问题看成多标签分类问题,将稠密连接网络应用于单矢量水听器目标方位估计,使用经典方法中广泛关注的二阶统计量作为神经网络的输入,使用不断生成训练集的方法训练神经网络。仿真及湖试结果表明,使用稠密连接网络相较经典方法具有更窄的主瓣和更高的方位分辨力;在2个目标信噪比相差6 dB及以上的情况下,稠密连接网络具备经典方法没有的同时检测2个目标的能力,且仍具有优秀的方位分辨力;当2个目标信噪比相差大于18 dB后稠密连接网络逐渐丧失了对弱目标的检测能力。Consider the problem of bearing estimation as a multi label classification problem,apply dense connected networks to single vector hydrophone target bearing estimation,use second-order statistics widely concerned in classical methods as input to the neural network,and train the neural network using the method of continuously generating training sets.The simulation and lake trial results show that using DenseNet has narrower main lobes and higher azimuth resolution compared to classical methods;When the signal-to-noise ratio of two targets differs by 6 dB or more,the DenseNet has the ability to simultaneously detect two targets that classical methods do not have,and still has excellent azimuth resolution;When the signal-to-noise ratio difference between two targets exceeds 18 dB,the DenseNet gradually losses its ability to de-tect weak targets.

关 键 词:稠密连接网络 单矢量水听器 波达方位估计 方位分辨力 信噪比 

分 类 号:U666.7[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象