检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张成佳 ZHANG Chengjia(Army Special Operations College,Guilin 541002)
机构地区:[1]陆军特种作战学院,桂林541002
出 处:《舰船电子工程》2024年第4期91-95,共5页Ship Electronic Engineering
摘 要:针对传统装甲目标威胁评估方法主观因素影响大、孤立考虑目标特征、忽略时序性的问题,提出一种基于动态图卷积神经网络(Dynamic Graph Convolutional Network,DCGN)的装甲目标威胁评估方法。分析陆域装甲装备作战问题,使用合理的目标特征预处理;根据选取的目标特征,建立威胁评估的初始图;利用动态图卷积神经网络将建立的初始图进行深度学习;最后进行仿真实验,并将评估结果与传统方法进行对比,验证了基于动态图卷积神经网络的装甲目标威胁评估方法在动态不确定、关联性复杂的陆域作战中有更高的准确率、更强的鲁棒性。A threat assessment method for armored targets based on dynamic graph convolutional neural network is proposed to address the issues of large subjective factors,isolated consideration of target features,and neglect of timing in traditional threat assessment methods.This paper analyzes the operational issues of armored equipment on land battlefields,selects reasonable target features to preprocess them,establishes an initial threat assessment graph based on the selected target features,uses dynamic graph convolutional neural networks to perform deep learning on the established initial graph,and conducts a simulation using a numerical example.The evaluation results compared with traditional methods indicate that threat assessment based on dynamic graph convolu⁃tional neural networks has high accuracy and strong robustness,and is more suitable for practical land battlefield environments with high dynamic and strong correlation.
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7