检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘建颖 靳彩云 赖玲焠 卢雪凤 LIU Jianying;JIN Caiyun;LAI Lingcui;LU Xuefeng(Zhongshan Hospital(Xiamen),Fudan University,Fujian 361000 China)
机构地区:[1]复旦大学附属中山医院厦门医院,福建361000
出 处:《循证护理》2024年第13期2343-2349,共7页Chinese Evidence-Based Nursing
摘 要:目的:构建住院结肠镜检查病人肠道准备失败风险预测模型,并对其预测效果进行验证。方法:选择2023年2月—8月在厦门市某三级医院行结肠镜检查或肠镜下手术的491例住院病人作为调查对象,按照7∶3的比例将所有样本随机分为建模组(343例)与验证组(148例)。使用Lasso回归筛选风险预测因子,并使用Logistic回归分析确定肠道准备失败的危险因素,建立列线图预测模型。通过受试者工作特征曲线(ROC)分析及F1分数对模型的预测效果进行评价,并使用Hosmer-Lemeshow检验对模型进行拟合度评价。结果:Logistic回归分析显示,使用钙通道阻滞剂、上午检查、便秘、首次行结肠镜检查、年龄≥75岁、偶尔行走是肠道准备失败的独立危险因素。将上述变量纳入模型,建模组ROC曲线下面积(AUC)为0.725[95%CI(0.664,0.787),P<0.001],灵敏度为0.637,特异度为0.722,正确率为74.64%,F1分数为0.843,Hosmer-Lemeshow检验示,χ^(2)=8.81,P=0.267。验证组AUC为0.737[95%CI(0.644,0.830),P<0.001],灵敏为0.795,特异度为0.624,正确率为77.03%,F1分数为0.856,Hosmer-Lemeshow检验示,χ^(2)=6.25,P=0.400。结论:构建的肠道准备失败风险列线图预测模型可为早期识别肠道准备失败高风险病人、针对性制定肠道准备强化方案提供参考。Objective:To construct a risk prediction model for bowel preparation failure in inpatients colonoscopy examination and verify its prediction effect.Methods:A total of 491 inpatients who underwent colonoscopy or colonoscopy surgery in a tertiary hospital in Xiamen from February to August 2023 were selected as the survey subjects.All samples were randomly divided into the modeling group(343 cases)and the validation group(148 cases)in a ratio of 7:3.Lasso regression was used to screen risk predictors.Logistic regression analysis was used to identify risk factors for intestinal failure and establish a nomogram prediction model.The prediction effect of the model was evaluated through Receiver Operating Characteristic(ROC)curve analysis and F1 score,and the Hosmer-Lemeshow test was used to evaluate the model′s fit.Results:Logistic regression analysis showed that calcium channel blockers,morning examination,constipation,first colonoscopy,age≥75 years,and occasional walking were independent risk factors for bowel preparation failure.Including the above variables into the model,the area under the curve(AUC)of the modeling group was 0.725(95%CI 0.664-0.787,P<0.001),the sensitivity was 0.637,the specificity was 0.722,the accuracy rate was 74.64%,the F1 score was 0.843,and Hosmer-Lemeshow test showed thatχ^(2)=8.81,P=0.267.The AUC of the validation group was 0.737(95%CI 0.644-0.830,P<0.001),the sensitivity was 0.795,the specificity was 0.624,the accuracy rate was 77.03%,and the F1 score was 0.856,and Hosmer-Lemeshow test showed thatχ^(2)=6.25,P=0.400.Conclusions:The constructed risk nomogram prediction model for bowel preparation failure can provide a reference for the early identification of patients at high risk of bowel preparation failure and the development of targeted bowel preparation intensive programs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.119.115