Constrained re-calibration of two-equation Reynolds-averaged Navier–Stokes models  

在线阅读下载全文

作  者:Yuanwei Bin Xiaohan Hu Jiaqi Li Samuel J.Grauer Xiang I.A.Yang 

机构地区:[1]Department of Mechanical Engineering,Pennsylvania State University,University Park,PA 16802,USA [2]State Key Laboratory for Turbulence and Complex Systems,Peking University,Beijing 100871,China [3]College of Engineering,Peking University,Beijing 100871,China

出  处:《Theoretical & Applied Mechanics Letters》2024年第2期82-89,共8页力学快报(英文版)

基  金:supported by the Air Force Office of Scientific Research(Grant No.FA9550-23-1-0272);the National Natural Science Foundation of China(Grant Nos.11988102 and 91752202).

摘  要:Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the functions)in a Reynolds-averaged Navier–Stokes(RANS)model are coupled,and un-constrained re-calibration of these constants(and functions)can disrupt the calibrations of the baseline model,the preservation of which is critical to the model's generalizability.To safeguard the behaviors of the baseline model beyond the training dataset,machine learning must be constrained such that basic calibrations like the law of the wall are kept intact.This letter aims to identify such constraints in two-equation RANS models so that future machine learning work can be performed without violating these constraints.We demonstrate that the identified constraints are not limiting.Furthermore,they help preserve the generalizability of the baseline model.

关 键 词:Machine learning Turbulence modeling Reynolds-averaged Navier-Stokes 

分 类 号:O357.5[理学—流体力学] TP181[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象