检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuanwei Bin Xiaohan Hu Jiaqi Li Samuel J.Grauer Xiang I.A.Yang
机构地区:[1]Department of Mechanical Engineering,Pennsylvania State University,University Park,PA 16802,USA [2]State Key Laboratory for Turbulence and Complex Systems,Peking University,Beijing 100871,China [3]College of Engineering,Peking University,Beijing 100871,China
出 处:《Theoretical & Applied Mechanics Letters》2024年第2期82-89,共8页力学快报(英文版)
基 金:supported by the Air Force Office of Scientific Research(Grant No.FA9550-23-1-0272);the National Natural Science Foundation of China(Grant Nos.11988102 and 91752202).
摘 要:Machine-learned augmentations to turbulence models can be advantageous for flows within the training dataset but can often cause harm outside.This lack of generalizability arises because the constants(as well as the functions)in a Reynolds-averaged Navier–Stokes(RANS)model are coupled,and un-constrained re-calibration of these constants(and functions)can disrupt the calibrations of the baseline model,the preservation of which is critical to the model's generalizability.To safeguard the behaviors of the baseline model beyond the training dataset,machine learning must be constrained such that basic calibrations like the law of the wall are kept intact.This letter aims to identify such constraints in two-equation RANS models so that future machine learning work can be performed without violating these constraints.We demonstrate that the identified constraints are not limiting.Furthermore,they help preserve the generalizability of the baseline model.
关 键 词:Machine learning Turbulence modeling Reynolds-averaged Navier-Stokes
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.82