基于梯形分块法的截面分析方法研究  

Research on Section Analysis Method Based on Trapezoidal Segmentation Method

在线阅读下载全文

作  者:郭凯生 GUO Kaisheng(Guangdong Communication Planning&Design Institute Group Co.,Ltd.Guangzhou 510440,China)

机构地区:[1]广东省交通规划设计研究院集团股份有限公司,广州510440

出  处:《广东土木与建筑》2024年第6期95-98,共4页Guangdong Architecture Civil Engineering

摘  要:根据梯形分块法原理,将截面离散为梯形块,可通过迭代计算求解出截面受压区域,基于《混凝土结构设计规范:GB50010—2010》[1]中的偏心受压及偏心受拉承载力计算公式形成了钢筋混凝土构件截面分析计算方法。该方法适用于任意形状任意配筋钢筋混凝土截面计算,迭代计算稳定准确,能够得到完整的轴力-弯矩曲线,对于评价截面承载能力和受力性能有重要意义。与纤维截面模型相比,梯形分块法对分块的尺寸没有限制,具有很高建模计算效率及计算稳定性,并且可灵活结合文献[1]计算公式。将梯形分块法计算结果与纤维截面模型结果对比,二者基本吻合,证明了梯形分块法计算结果的可靠性。According to the principle of trapezoidal segmentation method,the cross-section is discretized into trapezoidal segments,and the compressed area of the cross-section can be solved through iterative calculation.Based on the calculation formulas for eccentric compression and eccentric tensile bearing capacity in the code,a section analysis method for RC structure is formed.This method is applicable to the calculation of RC cross-sections with arbitrary shape and reinforcement,with stable and accurate iterative calculations.It can obtain a complete axial force moment curve,which is of great significance for evaluating the bearing capacity and performance.Compared with the fiber cross-section model,the trapezoidal segmentation method has no limitation on the size of the segments which leads to high modeling and computational efficiency and stability.And the trapezoidal segmentation method can be combined with standardized calculation formulas flexibly.The comparison between the calculation results of the trapezoidal segmentation method and the fiber cross-section model shows that the two are basically consistent,proving the reliability of the calculation results of the trapezoidal segmentation method.

关 键 词:钢筋混凝土结构 梯形分块法 纤维模型 截面特性 截面分析方法 

分 类 号:TU312.3[建筑科学—结构工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象