检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹舒雅 张文旭[1,2] 赵桐 马丹 CAO Shuya;ZHANG Wenxu;ZHAO Tong;MA Dan(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,Heilongjiang,China;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin Engineering University,Harbin 150001,Heilongjiang,China)
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]哈尔滨工程大学工业和信息化部先进船舶通信与信息技术重点实验室,黑龙江哈尔滨150001
出 处:《制导与引信》2024年第2期11-19,共9页Guidance & Fuze
基 金:黑龙江省自然科学基金(LH2020F020)。
摘 要:对不同类型的雷达有源干扰进行了讨论,分析了不同干扰的作用机理,并对其干扰效果进行了仿真。讨论了深度Q-学习网络(deep Q-learning network,DQN)算法在传统算法基础上的改进,以及基于DQN的智能干扰决策流程,并通过仿真实验验证了基于DQN的干扰决策算法的认知特性,同时测试了其在不稳定环境下的性能。仿真结果表明,采用基于DQN的干扰决策算法,能够使干扰机在缺乏先验知识的未知环境中,通过与环境的交互学习,不断提升干扰策略性能。Different types of radar active jamming were discussed.The mechanism of different jamming was analyzed and the jamming effects were simulated.The improvement of deep Q-learning network(DQN)algorithm compared with the traditional algorithm and the intelligent jamming decision process based on DQN were discussed.The cognitive characteristics of jamming decision algorithm based on DQN were verified by simulation experiments,and the performance of the algorithm in unstable environment was tested.The simulation results show that the jamming decision algorithm based on DQN can continuously improve the interference strategy of jammer through interactive learning with the environment in the unknown environment without prior knowledge.
分 类 号:TN974[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49