可判别性标签语义指导的域适应检索  被引量:1

Discriminative Label Semantic Guidance Learning for Domain Adaptive Retrieval

在线阅读下载全文

作  者:周康宾 滕璐瑶 张巍[1] 滕少华[1] ZHOU Kangbin;TENG Luyao;ZHANG Wei;TENG Shaohua(School of Computer Science,Guangdong University of Technology,Guangzhou 510006,China;School of Information Engineering,Guangzhou Panyu Polytechnic,Guangzhou 511483,China)

机构地区:[1]广东工业大学计算机学院,广州510006 [2]广州番禺职业技术学院信息工程学院,广州511483

出  处:《小型微型计算机系统》2024年第7期1639-1647,共9页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61972102)资助。

摘  要:从不同领域准确检索相似的对象,域适应检索解决了信息检索中的域偏移问题.然而,现有的方法仍然存在两个问题:a)忽略了类结构差异造成的域偏移(跨域和域内不同类的距离较近);b)忽略了特征与标签之间的语义差异.为了解决上述两个问题,本文提出了一种高效的可判别性标签语义指导学习(DLSG)方法.该方法探索源域和目标域的类结构,通过拉大不同类的距离使得类别更具有判别性.然后通过标签语义指导学习(LSG)来增强特征的标签语义,以提高学习的有效性.此外,动态对齐边缘分布和条件分布,以减少域差异.最后,采用两步哈希策略生成高质量的哈希码.在多个跨域检索数据集上的实验表明,DLSG的性能得到了提高.To accurately retrieve similar objects from different domains,domain adaptive retrieval solves the domain shift of information retrieval.However,existing methods still have two problems:a)they ignored the domain shift caused by class structure discrepancy(in cross-domain and intra-domain,the distance between different classes is close);b)they ignore the semantic discrepancy between features and labels.To solve the above two issues,we propose an efficient Discriminative Label Semantic Guidance Learning(DLSG).This method explores the class structure of the source domain and target domain,and makes the class more discriminative by maximizing the distance mean of one class from means of other classes.Second,Label Semantic Guidance learning(LSG)is used to enhance the label semantics of features during transfer learning.In addition,dynamically align margin distribution and condition distribution to reduce domain discrepancy.At last,a two-step hashing strategy is used to generate high-quality hash codes.Experiments on multiple cross-domain retrieval datasets demonstrate that the advanced performance is gained and the retrieval speed of DLSG is quick.

关 键 词:域适应检索 可判别性 标签语义指导学习 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象