基于最大最小蚁群系统的车载自组网路由策略  被引量:1

Vehicular Ad-Hoc Network Routing Strategy Based on Max-min Ant System

在线阅读下载全文

作  者:姚玉坤[1] 张关鑫 刘旭冉 韦亮 YAO Yukun;ZHANG Guanxin;LIU Xuran;WEI Liang(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)

机构地区:[1]重庆邮电大学通信与信息工程学院,重庆400065

出  处:《小型微型计算机系统》2024年第7期1749-1755,共7页Journal of Chinese Computer Systems

基  金:国家自然科学基金项目(61971080)资助。

摘  要:城市车载自组织网络中具有拓扑变化频繁,车辆分布不均匀等特性,因此如何选择下一跳车辆和确定最优传输路径是在复杂城市环境下设计高效路由协议的两个具有挑战性的问题.针对目前车载自组网中基于地理位置的算法具有下一跳车辆选取不合理,数据的传输路径缺少整体规划等问题,提出了一种基于最大最小蚁群系统的车载自组网路由策略.首先,采用基于分段连通度的最大最小蚁群探索机制进行路径探索.其次,采用基于接收节点驱动的转发机制优化数据包在车辆之间的多跳转发方式.仿真结果表明,与经典的基于地理位置的GPSR协议和基于GPSR协议改进的MM-GPSR算法相比较,本算法在数据包投递率和平均端到端时延方面均优于对比算法.Urban Vehicular Ad-Hoc Network(VANET)are characterized by frequent topological changes and uneven vehicle distribution.Therefore,how to select the next hop vehicle and determine the optimal transmission path are two challenging problems in designing efficient routing protocols in complex urban environments.Aiming at the problems of unreasonable next-hop vehicle selection and lack of overall planning of data transmission path in the current VANET based on geographic location algorithm,a Vehicular Ad-Hoc Network routing strategy based on max-min ant system was proposed.Firstly,a max-min ant colony exploration mechanism based on segmental connectivity is used for path exploration.Secondly,the forwarding mechanism driven by the receiving node is used to optimize the multi-hop forwarding mode of data packets between vehicles.Finally,a path-oriented recovery strategy is used for route recovery.The simulation results show that,compared with the classic GPSR protocol based on geographic location and the improved MM-GPSR algorithm based on GPSR protocol,this algorithm is superior to the comparison algorithm in terms of data packet delivery rate and average end-to-end delay.

关 键 词:车载自组网 最大最小蚁群系统 分段连通度 路径探索 接收节点驱动 

分 类 号:TN929[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象