应对高阶不确定性的输配电协同优化调度  

Collaborative and optimal dispatching of transmission and distribution to cope with high-order uncertainty

在线阅读下载全文

作  者:代勇 马延庆 袁飞 张伟 崔璨 于永进[2] 李长云[2] DAI Yong;MA Yanqing;YUAN Fei;ZHANG Wei;CUI Can;YU Yongjin;LI Changyun(Tai'an Power Supply Company,State Grid Shandong Electric Power Company,Tai’an271000,China;Department of Electrical Engineering,Shandong University of Science and Technology,Qingdao 266590,China)

机构地区:[1]国网山东省电力公司泰安供电公司,山东泰安271000 [2]山东科技大学电气工程系,山东青岛266590

出  处:《安徽大学学报(自然科学版)》2024年第3期50-59,共10页Journal of Anhui University(Natural Science Edition)

基  金:国网山东省电力公司科技项目(ERP:520609220002)。

摘  要:为应对风力发电与负荷侧的不确定性,提高电力系统对可再生能源的消纳能力,实现输电网和配电网间的优化调度,该文提出应对高阶不确定性的输配电协同优化调度模型.该文模型考虑风力发电及负荷侧的不确定性,在输配电互联的基础上引入电气热综合能源系统.研究结果表明:该文模型能提高系统的风电并网能力,增强系统适应电负荷波动的性能,降低系统的碳排放,提升系统的经济性.该文研究结果可为电力系统应对高阶不确定性制定输配电调度策略时,提供依据和支撑.In order to cope with the uncertainty of wind power generation and load side,to improve the power system's ability to consume renewable energy,and to realize the optimal scheduling between transmission and distribution networks,a transmission and distribution cooperative optimal scheduling model to cope with higher-order uncertainty was proposed in this paper.The model took into account wind power generation and load-side uncertainties and introduced an electrical-thermal integrated energy system based on transmission and distribution interconnections.The results showed that the model in this paper could improve the system grid-connected capability of wind power,enhance the system performance in adapting to electric load fluctuations,reduce the system's carbon emissions,and improve the system's economy.The results of this paper could provide a basis and support for power systems when developing transmission and distribution scheduling strategies to cope with higher-order uncertainties.

关 键 词:电气热综合能源系统 高阶不确定性 ADMM 机组组合 输配电协同系统 

分 类 号:TM72[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象