ITD结合参数优化MOMEDA的滚动轴承故障特征提取  

Fault Feature Extraction of Rolling Bearing Combining ITD and Parameter Optimized MOMEDA

在线阅读下载全文

作  者:刘沛 彭珍瑞[1] 何泽人 LIU Pei;PENG Zhenrui;HE Zeren(School of Mechanical Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China)

机构地区:[1]兰州交通大学机电工程学院,兰州730070

出  处:《机械科学与技术》2024年第6期967-974,共8页Mechanical Science and Technology for Aerospace Engineering

基  金:甘肃省自然科学基金重点项目(20JR10RA209);甘肃省高校协同创新团队项目(2018C-12);兰州市人才创新创业项目(2017-RC-66)。

摘  要:针对固有时间尺度分解(Intrinsic time scale decomposition,ITD)方法在强背景噪声影响下难以提取轴承故障特征的问题,提出了一种ITD与参数优化的多点最优最小熵解卷积(Multipoint optimal minimum entropy deconvolution adjusted,MOMEDA)相结合的滚动轴承故障特征提取方法。首先根据包络谱峰值因子最大原则提取包含丰富故障信息的ITD分量,其次对该分量进行MOMEDA降噪处理。对影响MOMEDA滤波效果的两个参数——故障周期T与滤波器长度L分别以多点峭度和平方包络谱的基尼指数进行优化,最后进行包络谱分析提取故障特征频率。通过仿真信号与实测信号分析表明该方法能在强噪声干扰下有效提取故障特征。Aiming at the problemthat the intrinsic time scale decomposition(ITD)method is difficult to extract bearing fault features under the influence of strong background noise,a new fault features extraction method for rolling bearings combining ITD and parameter optimized multipoint optimal minimum entropy deconvolution adjusted(MOMEDA)is proposed.First,the ITD component containing rich fault information is extractedfrom fault signals according to the principle of maximum crest factor of envelope spectrum.Then,the MOMEDA noise reduction process is performed on the decomposedcomponent.The two parameters-fault period T and filter length L that affect the filtering effect of MOMEDA,are optimized with multi-point kurtosis and Gini index of square envelope spectrum respectively.Finally,envelope spectrum analysis is performed to extract fault characteristic frequencies.The analysis of the simulated signal and the measured signal shows that the new method can effectively extract the fault features of rolling bearings under the strong noise interference.

关 键 词:固有时间尺度分解 多点最优最小熵解卷积 滚动轴承 包络谱峰值因子 基尼指数 

分 类 号:TH133.33[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象