检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万渊[1,2] 李蕊 张扬[3] 袁金如 熊恒[1] 周国威 刘继桥 侯霞[1,2] WAN Yuan;LI Rui;ZHANG Yang;YUAN Jinru;XIONG Heng;ZHOU Guowei;LIU Jiqiao;HOU Xia(Aerospace Laser Technology and System Department,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences,Shanghai 201800,China;Center of Materials Science and Optoelectronics Engineering,University of Chinese Academy of Sciences,Beijing 100049,China;Shanghai Institute of Satellite Engineering,Shanghai 201109,China)
机构地区:[1]中国科学院上海光学精密机械研究所空天激光技术与系统部,上海201800 [2]中国科学院大学材料与光电研究中心,北京100049 [3]上海卫星工程研究所,上海201109
出 处:《红外与激光工程》2024年第6期61-70,共10页Infrared and Laser Engineering
基 金:中国科学院战略性重点研究计划项目(XDA19090100)。
摘 要:提出了一种针对星载激光雷达在轨高精度光轴监测与标定需求的多光轴监测方法,该方法基于主动激光光源。通过使用785 nm的激光,分束后分别照射到星敏感器的基准棱镜和接收望远镜的取光棱镜,反射信号被聚焦至监视相机的焦平面,实现了对接收光轴及星敏光轴的精确监测。此外,监视相机还同步采集发射激光的部分能量,用于测量监测发射光轴。文中详细描述了光学系统的设计流程及关键组件的优化方案,并通过地面真空环境试验及在轨监测数据进行了验证。设计结果表明,各监视通道的成像质量达到了衍射极限,收发光轴的设计精度分别为0.09μrad和2.28μrad,关键组件取光棱镜的温控精度达到了±0.2℃。地面的真空热光试验结果进一步验证了该方案的高精度光轴监视能力,收发光轴的监测精度均优于3μrad。最后通过分析激光雷达入轨后的测量数据,确认了视轴监测系统的工作稳定性,成功实现了在轨的高精度光轴监视。该研究成果为星载激光雷达提供了一种有效的在轨高精度光轴监测与标定解决方案。Objective With the increasing seriousness of global atmospheric environmental pollution,spaceborne lidar,as a new type of active remote sensing instrument,has become an important load for global atmospheric measurement,which can achieve high-precision measurement of atmospheric components such as greenhouse gases,particulate matter,and aerosols.Compared with the passive detection of spaceborne cameras,lidar has more stringent requirements for the stability of optical systems.The mechanical impact during the orbiting process,the change of gravity field during the orbiting operation,the change of temperature,the release of internal stress,and the jitter of the satellite platform will cause the structural deformation of the main optical machine of the lidar,thereby destroying the consistency of the optical axis of the radar transceiver and causing a decrease in detection efficiency.In addition,the change of the direction of the lidar optical axis relative to the star sensor will lead to the deviation of the radar optical axis relative to the reference measurement attitude.Therefore,high-precision transceiver optical axis monitoring and matching technology is necessary for active detection of remote sensing functions.The optical axis monitoring unit is used to monitor the real-time variation of the transceiver optical axis,which is an important part of the optical axis matching feedback mechanism.Methods Figure 1 shows the main components of the visual axis monitoring system,including the active 785 nm reference light source,the visual axis camera,the CCD focusing lens group,the eyepiece,the receiving optical axis prism,the star sensor reference mirror,the beam combiner and the beam splitter.The active reference light source in the system uses a laser diode with a wavelength of 785 nm.After the tail fiber output laser is collimated and shaped,it first passes through the beam splitter M1.In this process,about one-tenth of the beam energy is reflected into the surveillance camera as a reference optical axis.Subsequentl
分 类 号:TN249[电子电信—物理电子学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7