基于稠密连接的通道混合式PCANet的低分辨率有遮挡人脸识别  

Dense channel-hybrid PCANet for low-resolution and occluded face recognition

在线阅读下载全文

作  者:秦娥[1] 何佳瑶 刘银伟 朱娅妮 李小薪 QIN E;HE Jiayao;LIU Yinwei;ZHU Yani;LI Xiaoxin(College of Computer Science and Technology,Zhejiang University of Technology,Hangzhou 310023;School of Computer Science,Hanzhou Dianzi University,Hangzhou 310018)

机构地区:[1]浙江工业大学计算机科学与技术学院,杭州310023 [2]杭州电子科技大学计算机学院,杭州310018

出  处:《高技术通讯》2024年第6期602-615,共14页Chinese High Technology Letters

基  金:浙江省自然科学基金(LGF22F020027);国家自然科学基金(62271448)资助项目。

摘  要:针对低分辨率有遮挡人脸识别问题提出了基于稠密连接的通道混合式主成分分析网络(DCH-PCANet)。现有的PCANet模型的卷积层只使用了通道无关式卷积(CIC)。通道无关式卷积由于未考虑特征图在通道方向上的相关性,可以更好地凸显单个特征图的局部纹理特征,对于补偿因低分辨率、遮挡等因素导致的特征损失具有重要意义,但也会强化遮挡区域的特征,从而放大坏特征的影响范围;而通道相关式卷积(CDC)由于充分考虑了各特征图在通道方向上的相关性,可以较好地抑制坏特征的作用,形成较为稀疏的特征图。在PCANet中添加了基于通道相关式卷积的特征图提取分支,形成了通道混合式PCANet;并且引入了稠密连接,以充分利用低阶特征提升有遮挡图像识别的鲁棒性。针对如下4种数据集进行了实验:受控环境、真实遮挡和模拟低分辨率的人脸数据集(AR人脸数据集),非受控环境、真实遮挡和模拟低分辨率的人脸数据集(MFR2和PKUMasked-Face),非受控环境、真实遮挡和真实低分辨率的人脸数据集(自建数据集)。实验结果表明,与现有方法相比,所提出的基于稠密连接的通道混合式PCANet具更好的遮挡鲁棒性和低分辨率鲁棒性,可以作为前沿方法的有效补充,提升其识别性能。A dense channel-hybrid PCANet (DCH-PCANet) is proposed to recognize low-resolution and occluded face images. Only channel-independent convolutions (CIC) are used in the convolutional layer of the existing principal component analysis network(PCANet) model. Since CIC does not consider the correlation of the feature maps in the channel direction, it can better highlight the local texture features of a single feature map, which is of great sig-nificance for compensating the feature loss caused by low resolution and occlusion. However, CIC will also strengthen the occlusion features, hence enlarging the influence range of bad features. The channel-dependent con-volution (CDC) fully considers the correlation of all feature maps in the channel direction, which can better sup-press the effect of bad features and form a sparse feature map. A CDC-based feature-map extraction branch is added to PCANet to form a channel-hybrid PCANet. And dense connections are also introduced to make full use of low-level features to improve the robustness of occluded image recognition. Experiments are conducted on the following four datasets: AR face dataset, where face images with real occlusions and simulated low-resolutions are acquired in controlled environment;MFR2 and PKU-Masked-Face, where face images with real occlusions and simulated low-resolutions are acquired in uncontrolled environment;our own dataset, where face images with real occlusion and real low-resolution are acquired in uncontrolled environment. Experimental results show that compared with the ex-isting methods, the proposed DCH-PCANet has better occlusion and low-resolution robustness, which can be used as an effective supplement to the cutting-edge methods to improve their recognition performance.

关 键 词:有遮挡人脸识别 主成分分析网络(PCANet) 通道相关式卷积(CDC) 稠密连接 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术] TP183[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象