检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨环宇 王军[1] 吴祥 薄煜明[1] 马立丰 陆金磊 YANG Huanyu;WANG Jun;WU Xiang;BO Yuming;MA Lifeng;LU Jinlei(School of Automation,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)
机构地区:[1]南京理工大学自动化学院,江苏南京210094
出 处:《兵工学报》2024年第7期2128-2143,共16页Acta Armamentarii
摘 要:战场态势瞬息万变,利用可见光图像对敌方用于军事行动的飞机类型进行有效区分,对提供军事作战信息具有重要意义。针对现有军用飞机识别方法存在小目标飞机和环境背景复杂导致的模型特征提取困难、数据样本数量不足导致的模型训练不充分的问题,提出一种坐标通道注意力(ConvNeXt-Coordinate Attention,ConvNeXt-CA)深度学习网络军用飞机目标识别方法。该方法在ConvNeXt网络可以保留小目标飞机特征的基础上,引入CA机制设计CA-Stage模块,提升网络对于背景和前景的区分能力;采用数据增强的方式扩充数据集,以及使用迁移学习的策略提高模型的泛化能力,训练得到具备最优超参数的ConvNeXt-CA网络。实验结果表明,与传统的军用飞机识别方法和其他深度学习模型相比,基于迁移学习的ConvNeXt-CA网络在预测准确率上有明显的提升,且具备较强的泛化能力。The military combat information can be provided by using the visible images to effectively distinguish the types of enemy aircrafts used for military operations in a rapidly changing battlefield environment.To address the challenges associated with extracting the model features from small aircraft targets and complex environmental backgrounds,as well as the limited training data available in existing military aircraft recognition methods,this paper proposes a ConvNeXt with coordinate attention(ConvNeXt-CA)-based recognition method for military aircraft targets.Based on the fact that the ConvNeXt-CA network can retain the characteristics of small aircrafttargets,the proposed method introduces the CA mechanism to design a CA-Stage module,which improves the ability of the network to distinguish between background and foreground.It uses data augmentation to expand the data set and the migration learning strategy to improve the generalization capability of the model,and trains the ConvNeXt-CA network with optimal hyperparameters.The experimental results show that,compared with the traditional military aircraft identification methods and other deep learning models,the migration learning-based ConvNeXt-CA network has a significantly improved prediction accuracy and a strong generalization capability.
关 键 词:军用飞机识别 深度卷积神经网络 坐标注意力机制 迁移学习
分 类 号:TJ85[兵器科学与技术—武器系统与运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.192.254