低温等离子体强化氨分解制氢实验装置设计与应用  

Design and application of an experiment platform for hydrogen production by low-temperature plasma-enhanced ammonia decomposition

在线阅读下载全文

作  者:何哲科 竺新波 沈国金 洪瑜 杨鑫 陈耿[1] 吴叶平[1] HE Zheke;ZHU Xinbo;SHEN Guojin;HONG Yu;YANG Xin;CHEN Geng;WU Yeping(Faculty of Maritime and Transportation,Ningbo University,Ningbo 315832,China;New Materials Institute,University of Nottingham Ningbo,Ningbo 315042,China)

机构地区:[1]宁波大学海运学院,浙江宁波315832 [2]宁波诺丁汉大学新材料研究所,浙江宁波315042

出  处:《实验技术与管理》2024年第6期164-171,共8页Experimental Technology and Management

基  金:国家自然科学基金项目(52371326);教育部高等学校交通运输类专业教学指导委员会航海技术教学指导分委员会教育教学改革研究项目(2022jzw005);宁波大学教学研究项目(JYXM2024015)。

摘  要:氨是未来船舶的无碳燃料之一,但其高燃点、低火焰扩散速率等特性会严重影响氨燃料发动机的点火及燃烧特性,通常需要加入氢等高活性引燃燃料进行混合燃烧。为此,该文设计了基于催化技术和低温等离子体技术交叉结合的综合性实验平台,平台以氨标准气体为反应物,可开展不同工况下氨分解制氢的教学与探索性实验。同时,该平台涵盖船舶主推进动力装置、物理化学、等离子体科学等基础学科教学内容,有助于培养学生的学科交叉意识,使其了解船舶柴油机节能减碳前沿性技术。[Objective]Ammonia emerges as a pivotal,carbon-free fuel for future maritime transportation.However,its adoption faces challenges owing to ammonia’s high ignition temperature and low flame diffusion rate.These characteristics complicate the ignition and combustion processes in ammonia-fueled engines,typically necessitating the introduction of reactive fuels like hydrogen to facilitate engine ignition.[Methods]To address these challenges,this study introduces an innovative experimental platform for NH_(3) decomposition.This platform combines catalysis with low-temperature plasma technologies.Specifically,our paper investigates the effects of different packing materials and variations in discharge power on the NH_(3) decomposition within a packed-bed dielectric barrier discharge(DBD)plasma reactor operating at ambient conditions.[Results]As the discharge power increases,we observe a corresponding rise in the reactor’s effective capacitance value,from 72.4 pF to 97.2 pF.This facilitates the generation of additional discharge channels and free electrons within the packed-bed DBD plasma reactor.Electron collision with NH_(3) molecules enhances the production of reactive species in the reactor.These atoms and molecules are more susceptible to dissociation owing to their excited state.In addition,the high discharge powers lead to a high“electrical heat”in the rector,which further activates the packing materials.The integration of plasma technology and packing materials strengthens the discharge characteristics of the packed-bed DBD plasma reactor,thereby boosting NH_(3) decomposition performance.When comparing non-packed reactors with those packed with ZSM-5,ZSM-35,and ZSM-23 materials,the NH_(3) decomposition performance increases from 59.2%to 71.7%,73.2%,and 77.3%,respectively,at a discharge power of 16 W.Moreover,energy efficiency increases from 208.1 mmol/kWh in the non-packed reactor to 1359.3 mmol/kWh using ZSM-23 packing material,marking an improvement of approximately 653.2%.The active sites on the surfa

关 键 词:等离子体 氨分解 制氢 船舶柴油机 

分 类 号:O53[理学—等离子体物理] TQ116.2[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象