检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蒋申彗 刘慧芳[1] 李福选 JIANG Shenhui;LIU Huifang;LI Fuxuan(Shenyang University of Technology,Faculty of Mechanical Engineering,Shenyang 110870,China)
出 处:《机械工程师》2024年第7期86-89,共4页Mechanical Engineer
摘 要:针对微纳制造产业及生命科学领域中黏合剂及活性药物的用量难以保证其精准度的问题,文中提出了一种基于图像边界提取的超微量胶滴形状参数在线检测方法。引入机器视觉对超微量胶滴的转移及成型过程进行在线检测,通过对超微量胶滴图像的实时采集,选用合适的图像处理方法及程序算法获取连续点胶过程中fL~pL级胶滴的形状参数,结果表明在线检测误差不超过5%。解决了超微量胶滴由于尺寸过小而难以测量的问题,保证了微纳制造及生命科学领域中液体分配的精确度与时效性,为精密器件的封装与活性药物的转移提供了精准反馈。Aiming at the problem that it is difficult to ensure the accuracy of the dosage of adhesives and active drugs in micro-nano manufacturing industry and life sciences,this paper proposes an online detection method for shape parameters of ultra-micro glue droplets based on image boundary extraction.Machine vision is introduced to detect the transfer and molding process of ultra-micro glue droplets online,and through the real-time acquisition of ultra-micro glue droplet images,appropriate image processing methods and program algorithms are selected to obtain the shape parameters of fL~pL level droplets in the continuous dispensing process,and the results show that the online detection error does not exceed 5%.It solves the problem that ultra-micro rubber droplets are difficult to measure due to their small size,ensures the accuracy and timeliness of liquid dispensing in micro-nano manufacturing and life sciences,and provides accurate feedback on the packaging of precision devices and the transfer of active drugs.
分 类 号:TH122[机械工程—机械设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.171.222