Metric and Upper Dimension of Extended Annihilating-Ideal Graphs  

在线阅读下载全文

作  者:S.Nithya G.Elavarasi Genghua Fan 

机构地区:[1]Department of Mathematics,St.Xavier's College(Autonomous)Palayamkottai 627002,Tamil Nadu,India [2]Afiliated to Manonmaniam Sundaranar University Abishekapatti,Tirunelveli 627012,Tamil Nadu,India [3]PG and Research Department of Mathematics,St.Xavier's College(Autonomous)Palayamkottai 627002,Tamil Nadu,India [4]Affiliated to Manonmaniam Sundaranar University Abishekapatti,Tirunelveli 627012,Tamil Nadu,India [5]不详

出  处:《Algebra Colloquium》2024年第2期221-238,共18页代数集刊(英文版)

摘  要:The metric dimension problem is called navigation problem due to its application to robot navigation in space.Further this concept has wide applications in motion planning,sonar and loran station,and so on.In this paper,we study certain results on the metric dimension,upper dimension and resolving number of extended annihilating-ideal graph EAG(R)associated to a commutative ring R,denoted by dim M(EAG(R)),dim+(EAG(R))and res(EAG(R)),respectively.Here we prove the finiteness conditions of dim M(EAG(R))and dim+(EAG(R)).In addition,we characterize dim M(EAG(R)),dim+(EAG(R))and res(EAG(R))for artinian rings and the direct product of rings.

关 键 词:extended annihilating-ideal graph metric dimension upper dimension resolving number 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象