检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李红艳[1] 陈子微 章瑞[1] LI Hong-yan;CHEN Zi-wei;ZHANG Rui(School of Management,Shanghai University of Engineering Science,Shanghai 201620,China;Human Resources Department,Shanghai Zhenhua Heavy Industries Co.,L.td.Shanghai 200125,China)
机构地区:[1]上海工程技术大学管理学院,上海201620 [2]上海振华重工(集团)股份有限公司人力资源部,上海200125
出 处:《数学的实践与认识》2024年第6期245-256,共12页Mathematics in Practice and Theory
基 金:国家自然科学基金(71861015,72371153);上海市哲学社会科学规划课题(2022BGL004)。
摘 要:文章通过构建灰色GM(1,1)-三次指数平滑模型及灰色区间GM(1,1)模型对我国城镇灵活就业青年人数进行了综合性预测首先,创新性地选用方差倒数法,构建了GM(1,1)-三次指数平滑模型,该预测模型的平均绝对误差和平均相对误差最小,提高了预测精度其次,根据小样本振荡序列的特征,构建了比较完善的灰色区间GM(1,1)模型,其结果显著地提高预测精度.最后,文章形成了基于“非正规就业率”的城镇灵活就业人数和灵活就业青年人数测算框架,并在引入老年人口系数基础上分别对灵活就业人员和青年人数建立GM(1,1)-三次指数平滑模型和灰色区间GM(1,1)模型,巧妙地将GM(1,1)-指数平滑模型与灰色区间GM(1,1)模型进行综合得到最终预测值,结果表明预测值与真实值吻合较好,实现了对多组数据的综合处理。By constructing the grey GM(1,1)-cubic exponential smoothing model and grey interval GM(1,1)model,this paper comprehensively predicts the number of fexible employment youth in urban areas.Firstly,the inverse variance method is innovatively used to construct the GM(1,1)-cubic exponential smoothing model.The average absolute error and average relative error of the model are minimized,and the prediction accuracy is improved.Secondly,according to the characteristics of small sample oscillation series,a relatively perfect grey interval GM(1,1)model is constructed,which significantly improves the prediction accuracy.Finally,this paper forms a framework for estimating the number of flexible employment in urban areas and the number of fexible employment youth based on"informal employment rate",and establishes a GM(1,1)-cubic exponential smoothing model and a grey interval GM(1,1)model for the number of flexible employment and the number of fexible employment youth based on the introduction of the elderly population coeficient.The GM(1,1)-exponential smoothing model and the grey interval GM(1,1)model are cleverly integrated to obtain the final predicted value.The results show that the predicted value is in good agreement with the real value,and the comprehensive processing of multiple sets of data is realized.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222