中国65岁及以上老年人6年虚弱发生风险预测模型研究  被引量:1

Prediction model related to 6-year risk of frailty in older adults aged 65 years or above in China

在线阅读下载全文

作  者:周锦辉 齐力 王君[2,4] 刘思馨 石文惠 叶丽红 张振伟[2,7] 张曾航 孟熙 崔佳 陈晨 吕跃斌[2,4] 施小明 Zhou Jinhui;Qi Li;Wang Jun;Liu Sixin;Shi Wenhui;Ye Lihong;Zhang Zhenwei;Zhang Zenghang;Meng Xi;Cui Jia;Chen Chen;Lyu Yuebin;Shi Xiaoming(National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100021,China;China CDC Key Laboratory of Environment and Population Health,National Institute of Environmental Health,Chinese Center for Disease Control and Prevention,Beijing 100021,China;Beijing Center for Disease Prevention and Control,Beijing 100020,China;National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases,National Institute of Environmental Health,Chinese Center for Disease Control and Prevention,Beijing 100021,China;Department of Epidemiology,School of Public Health,Southern Medical University,Guangzhou 510515,China;School of Population Medicine and Public Health,Chinese Academy of Medical Sciences and Peking Union Medical College,Beijing 100730,China;Editorial Department for Chinese Journal of Preventive Medicine,Chinese Medical Association Publishing House,Beijing 100052,China;Center for Global Health,School of Public Health,Nanjing Medical University,Nanjing 211166,China)

机构地区:[1]国家癌症中心/国家肿瘤临床医学研究中心/中国医学科学院北京协和医学院肿瘤医院,北京100021 [2]中国疾病预防控制中心环境与人群健康重点实验室/中国疾病预防控制中心环境与健康相关产品安全所,北京100021 [3]北京市疾病预防控制中心,北京100020 [4]传染病溯源预警与智能决策全国重点实验室,中国疾病预防控制中心环境与健康相关产品安全所,北京100021 [5]南方医科大学公共卫生学院流行病学系,广州510515 [6]中国医学科学院北京协和医学院群医学及公共卫生学院,北京100730 [7]中华医学会杂志社《中华预防医学杂志》编辑部,北京100052 [8]南京医科大学公共卫生学院全球健康中心,南京211166

出  处:《中华流行病学杂志》2024年第6期809-816,共8页Chinese Journal of Epidemiology

基  金:国家自然科学基金(82230111,82025030,82222063);中国科学技术协会(YESS20200046)。

摘  要:目的建立适用于中国≥65岁老年人的6年虚弱发生风险预测工具。方法数据源于2002-2018年中国老年健康影响因素跟踪调查,纳入13676名≥65岁基线无虚弱的老年人,通过最小绝对收缩和选择算子(LASSO)方法进行虚弱的关键预测因素识别,利用Cox比例风险回归模型建立虚弱发生风险预测模型,采用Bootstrap 2000次重复抽样方法进行模型内部验证,分别使用受试者工作特征曲线下面积(AUC)和校准曲线评价预测模型区分能力和校准能力,通过决策曲线对建立的预测工具开展净效益评估。结果研究对象年龄M(Q_(1),Q_(3))为81.0(71.0,90.0)岁。随访时间M(Q_(1),Q_(3))为6.0(4.1,9.2)年,期间共4126名(30.2%)老年人发生虚弱,发病密度为41.8/1000人年。LASSO筛选纳入15个关键的虚弱预测因素,包括年龄、性别、民族、受教育年限、肉类摄入、饮茶、做家务、饲养家禽/家畜、打牌/麻将、基线视力功能、日常生活自理能力评分、器具性日常生活自理能力评分、高血压、心脏病和自评健康状态。预测模型内部验证的AUC值为0.802,最大约登指数值为0.467,对应风险切点为19.0%。校准曲线提示,预测的虚弱发生概率和实际观测概率一致性较高。决策曲线提示在风险阈值<59%时,基于预测模型干预获得的净效益较全部干预或全部不干预更高,风险阈值为19.0%时,基于预测模型干预的净效益为0.10。结论基于问卷和体检等易获得信息构建的中国老年人6年虚弱发生风险预测模型效能好,具有筛选虚弱发生高危人群的潜在应用价值。Objective To develop a prediction tool for 6-year incident risk of frailty among Chinese older adults aged 65 years or above.Methods Data from the Chinese Longitudinal Healthy Longevity Survey from 2002 to 2018 was used,including 13676 older adults aged 65 years or above who were free of frailty at baseline.Key predictors of frailty were identified via the least absolute shrinkage and selection operator(LASSO)method,and were thereafter used to predict the incident frailty based on the Cox proportional hazards regression model.The model was internally validated by 2000 Bootstrap resamples and evaluated for the performance of discrimination and calibration using the area under the receiver operating characteristic curve(AUC)and calibration curve,respectively.The net benefit of the developed prediction tool was evaluated by decision-curve analysis.Results The M(Q_(1),Q_(3))age and follow-up time of the participants were 81.0(71.0,90.0)years and 6.0(4.1,9.2)years,respectively.A total of 4126 older persons(30.2%)were recorded with frailty incidents during the follow-up,with the corresponding incidence density of 41.8/1000 person-years.A total of 15 key predictors of frailty were selected by LASSO,namely,age,sex,race,education years,meat consumption,tea drinking,performing housework,raising domestic animals,playing cards or mahjong,and baseline status of visual function,activities of the daily living score,instrumental activities of the daily living score,hypertension,heart disease,and self-rated health.The prediction model was internally validated with an AUC of 0.802,with the max Youden's index of 0.467 at a risk threshold of 19.0%.The calibration curve showed high consistency between predicted probabilities and observed proportions of frailty events.The decision curve indicated that higher net benefits could be obtained via the prediction model than did strategies based on intervention in all or none participants for any risk threshold less than 59%,and the model-based net benefit was estimated to be 0.10 at a risk

关 键 词:虚弱 老年人 关键因素 预测模型 

分 类 号:R592[医药卫生—老年医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象