检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张锡英[1] 孙守东 于海浩[2] 边继龙[1] ZHANG Xiying;SUN Shoudong;YU Haihao;BIAN Jilong(School of Computer and Control Engineering,Northeast Forestry University,Harbin 150040,Heilongjiang,China;School of Computer Science and Technology,Heilongjiang University of Engineering,Harbin 150050,Heilongjiang,China)
机构地区:[1]东北林业大学计算机与控制工程学院,黑龙江哈尔滨150040 [2]黑龙江工程学院计算机科学与技术学院,黑龙江哈尔滨150050
出 处:《计算机工程》2024年第7期293-302,共10页Computer Engineering
基 金:国家自然科学基金青年项目(6210114);黑龙江省哲学社会科学研究规划项目(21TQB117)。
摘 要:针对多视图三维重建任务中点云完整性欠佳的问题,提出一种基于空间传播的多视图深度估计网络(SPMVSNet)。引入空间传播思想用于复杂条件下的稠密点云重建,并分别设计基于空间传播的混合深度假设策略和空间感知优化模块。混合深度假设策略采用由粗糙到精细的深度推理方式,将深度估计视为多标签分类任务,对正则化概率体执行交叉熵损失以约束代价体,从而避免回归方法过拟合和收敛速度过慢的问题。空间感知优化模块从包含高级语义特征表示的特征图中获得引导,在进行置信度检查后采用卷积空间传播网络,通过构建亲和矩阵来细化最终的深度图。同时,为解决大多数方法存在的对不满足多视图一致性的不可靠区域重建质量较低的问题,进一步结合注意力机制设计具有样本自适应能力的动态特征提取网络,用于增强模型的局部感知能力。实验结果表明,在DTU数据集上,SP-MVSNet的重建完整性相比于CVP-MVSNet提升32.8%,整体质量提升11.4%。在Tanks and Temples基准和Blended MVS数据集上,SP-MVSNet的表现也优于大多数已知方法,取得了良好的三维重建效果。This study proposes a Spatial Propagation-based Multi-View Stereo depth estimation Network(SPMVSNet)to address the issue of poor point-cloud integrity in multi-view 3D reconstruction tasks.The concept of spatial propagation is introduced for dense point-cloud reconstruction under complex conditions.Hybrid depth assumption strategies and spatial perception optimization modules are designed based on spatial propagation.The hybrid depth assumption strategy adopts a deep inference approach from rough to fine,treating depth estimation as a multilabel classification task.Cross-entropy loss is applied to the regularized probability volume to constrain the cost volume.This approach helps to prevent overfitting and moderates the convergence speed of the regression methods.The spatial perception optimization module obtains guidance from feature maps containing advanced semantic feature representations.After conducting confidence checks,it uses a convolutional spatial propagation network to refine the final depth map by constructing an affinity matrix.To address the issue of low reconstruction quality in regions that lack multi-view consistency,a dynamic feature extraction network with sample adaptation ability is developed.This network incorporates an attention mechanism to enhance the model's local perception capabilities.Experimental results demonstrate that on the DTU dataset,the reconstruction integrity of SPMVSNet improves by 32.8% compared with CVP-MVSNet,and the overall quality improves by 11.4%.On the Tanks and Temples benchmark and BlendedMVS dataset,SP-MVSNet outperformed most established methods,achieving notable 3D reconstruction results.
关 键 词:立体视觉 空间传播 稠密点云重建 注意力机制 深度估计
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.87