An ensemble learning method to retrieve sea ice roughness from Sentinel-1 SAR images  

在线阅读下载全文

作  者:Pengyi Chen Zhongbiao Chen Runxia Sun Yijun He 

机构地区:[1]School of Marine Sciences,Nanjing University of Information Science&Technology,Nanjing 210044,China [2]East Sea Information Center of State Oceanic Administration,Shanghai 200136,China

出  处:《Acta Oceanologica Sinica》2024年第5期78-90,共13页海洋学报(英文版)

基  金:The National Key Research and Development Program of China under contract No.2021YFC2803301;the National Natural Science Foundation of China under contract No.41977302;the National Natural Science Youth Foundation of China under contract No.41506199;the Natural Science Youth Foundation of Jiangsu Province under contrant No.BK20150905;the Science and Technology Project of China Huaneng Group Co.,Ltd.under contract No.HNKJ20-H66.

摘  要:Sea ice surface roughness(SIR)affects the energy transfer between the atmosphere and the ocean,and it is also an important indicator for sea ice characteristics.To obtain a small-scale SIR with high spatial resolution,a novel method is proposed to retrieve SIR from Sentinel-1 synthetic aperture radar(SAR)images,utilizing an ensemble learning method.Firstly,the two-dimensional continuous wavelet transform is applied to obtain the spatial information of sea ice,including the scale and direction of ice patterns.Secondly,a model is developed using the Adaboost Regression model to establish a relationship among SIR,radar backscatter and the spatial information of sea ice.The proposed method is validated by using the SIR retrieved from SAR images and comparing it to the measurements obtained by the Airborne Topographic Mapper(ATM)in the summer Beaufort Sea.The determination of coefficient,mean absolute error,root-mean-square error and mean absolute percentage error of the testing data are 0.91,1.71 cm,2.82 cm,and 36.37%,respectively,which are reasonable.Moreover,K-fold cross-validation and learning curves are analyzed,which also demonstrate the method’s applicability in retrieving SIR from SAR images.

关 键 词:2-D Cauchy continuous wavelet transform(CWT) Adaboost Regression sea ice sea ice surface roughness 

分 类 号:P715.7[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象