检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段永涛 DUAN Yongtao(Beijing Huaxing Exploration New Technology Co.,Ltd.,Tongzhou,Beijing 101102,China)
机构地区:[1]北京华星勘查新技术有限公司,北京通州101102
出 处:《测绘技术装备》2024年第2期6-9,共4页Geomatics Technology and Equipment
摘 要:城市植被是生态文明建设的重要组成部分,准确获取城市植被的分布信息是研究城市气候和地表能量平衡的重要内容。传统的植被信息提取方法精度较低,为解决此问题,本文选取郑州市中原区为研究区,利用高分二号卫星影像,基于Deeplab V3+深度学习模型提取研究区内的植被信息,并与传统的支持向量机、最大似然分类方法和常用的SegNet深度学习模型进行对比。结果表明,利用本文深度学习模型提取植被信息的准确率为87.96%,召回率为91.35%,F1分数为0.90,提取结果明显优于传统分类方法和SegNet深度学习模型,可为城市生态环境评价和规划管理提供一定的技术支持。Urban vegetation is an important part of ecological civilization construction.Accurately obtaining the distribution of urban vegetation is an important content in the study of urban climate and surface energy balance.For the problems that the accuracy from traditional vegetation information extraction methods is not high,Zhongyuan District of Zhengzhou City is selected as the study area in this paper,the vegetation information in the study area is extracted based on Deeplab V3+deep learning model using Gaofen-2 satellite images,and it is compared with traditional support vector machine,maximum likelihood classification method,and commonly used SegNet deep learning model.The results show that the vegetation information extracted by using the deep learning method proposed in this paper is significantly better than traditional classification methods and SegNet deep learning model,its accuracy is 87.96%,the recall rate is 91.35%,and the F1-score is 0.90,it can provide some technical support for urban ecological environment evaluation and planning management.
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.190.40