检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Computer Science and Technology,Dongguan University of Technology,Dongguan,523808,China [2]Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China
出 处:《Science China Mathematics》2024年第7期1481-1506,共26页中国科学(数学)(英文版)
基 金:supported by National Natural Science Foundation of China (Grant No. 12171223);the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010396)。
摘 要:Let n≥2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators.Also, we provide a minimal set for testing n-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke's 290-theorem(or Conway and Schneeberger's 15-theorem) on universal quadratic forms with integer coefficients.
关 键 词:integral quadratic forms n-universal quadratic forms dyadic fields 290-theorem
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.216.239.73