On n-universal quadratic forms over dyadic local fields  

在线阅读下载全文

作  者:Zilong He Yong Hu 

机构地区:[1]School of Computer Science and Technology,Dongguan University of Technology,Dongguan,523808,China [2]Department of Mathematics,Southern University of Science and Technology,Shenzhen,518055,China

出  处:《Science China Mathematics》2024年第7期1481-1506,共26页中国科学(数学)(英文版)

基  金:supported by National Natural Science Foundation of China (Grant No. 12171223);the Guangdong Basic and Applied Basic Research Foundation (Grant No. 2021A1515010396)。

摘  要:Let n≥2 be an integer. We give necessary and sufficient conditions for an integral quadratic form over dyadic local fields to be n-universal by using invariants from Beli's theory of bases of norm generators.Also, we provide a minimal set for testing n-universal quadratic forms over dyadic local fields, as an analogue of Bhargava and Hanke's 290-theorem(or Conway and Schneeberger's 15-theorem) on universal quadratic forms with integer coefficients.

关 键 词:integral quadratic forms n-universal quadratic forms dyadic fields 290-theorem 

分 类 号:O172.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象